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Abstract 
 
This paper describes a new method for designing low-pass differentiators that could be widely 
suitable for low-frequency signals with different sampling rates. The method is based on the 
differential property of convolution and the derivatives of B-spline bias functions. The first order 
differentiator is just constructed by the first derivative of the B-spline of degree 5 or 4. A high (>2) 
order low-pass differentiator is constructed by cascading two low order differentiators, of which 
the coefficients are obtained from the nth derivative of a B-spline of degree n+2 expanded by 
factor a. In this paper, the properties of the proposed differentiators were presented. In addition, 
we gave the examples of designing the first to sixth order differentiators, and several simulations, 
including the effects of the factor a on the results and the anti-noise capability of the proposed 
differentiators. These properties analysis and simulations indicate that the proposed differentiator 
can be applied to a wide range of low-frequency signals, and the trade-off between noise-
reduction and signal preservation can be made by selecting the maximum allowable value of a. 
 
Keywords: Low-pass Differentiator, B-spline, Finite-impulse Response (FIR), Digital Filters. 

 
 
1. INTRODUCTION 

Digital differentiators (DDs) have been applied in several areas, such as radar, sonar, 
communication systems and signal processing system [1-3]. In particularly, low-pass high-order 
DDs are utilized in biological and electrochemical signal processing etc [4, 5]. Since the signal 
values are known on discrete points because of sampling operation, difference approximation is 
usually used to design DDs [6]. However, differentiation could amplify the noises contaminating 
the signal, especially the high-frequency noises [4, 5, 7]. And the signals we need to study, such 

 
 

FIGURE 1: The frequency responses of the Savitzky-Golay digital differentiators (SGDDs) (―) and the 
corresponding ideal differentiators (---). (a) is the frequency response of the 2nd order SGDD by using 
fitting coefficients of fourth-order polynomials on 25 points, and (b) is the frequency response of the 4th 

order SGDD by using fitting coefficients of sixth-order polynomials on 35 points. 
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as biological and electrochemical signals, are mostly at low frequencies. Therefore, low-pass 
digital differentiators (LPDDs) have been to estimate the derivatives [5, 7, 8]. 
 
Many methods have been available for the design of LPDDs. Most of them focus on the first order 
differentiators [8-10], which cannot directly obtain the high order derivatives of the signals. The 
Savitzky-Golay digital differentiators (SGDDs) are generally used for smoothing and acquiring low 
or high order derivatives due to their low-pass characteristic and arbitrary lengths etc [5]. But 
there are several weak points for SGDDs. One hand, the filter length and the degree of fitting 
polynomials can be arbitrarily selected, which instead, makes it blind in selections. Although, 
recent researches have focused on adaptive extension of the SG approach [11-13], they may 
increase the complexity of the algorithm, and there is still a need for further researches and tests. 
On the other hand, the frequency responses of SGDDs have several ripples at high frequencies, 
and the frequency responses of even order SGDDs at ω = π are not zero (Figure 1), which may 
affect the results of SGDDs filtering the high-frequency noises [5, 14]. 
 
In order to meet the low-pass characteristic and apply to different types of signals, we propose a 
method for designing LPDDs based on B-splines by using the differential property of convolution. 
B-splines have been widely used in data smooth because of their explicit formulae and Gaussian-
like waveforms [15, 16]. Moreover, the derivatives of B-spline bias functions are continuous and 
easily obtained. Consequently, B-splines have been used to calculate the derivatives of the gray 
of the image [15, 17]. However, they have not been widely used to obtain the derivatives of 
sampled signals. 
 
The aim of this study, therefore, was to propose a method for designing any order LPDDs, which 
were simple, flexible, easy to control and suitable for low-frequency signals with various sampling 
rates. In this paper, we first introduced the method of the designs of LPDDs. Then, several 
properties of the proposed LPDDs were summarized, and some computer simulations of various 
orders LPDDs, acting on the input testing signals produced by a Gaussian function in different 
ways, were also presented. 

 
2. THEORIES 

2.1 Background 
Let βm denote the mth order central B-spline function that can be generated by repeated 
convolutions of a B-spline of degree 1 

)()()( 11-mm ttt βββ ∗=  (1) 

where β1(t) is the indicator function in the interval [-1/2, 1/2], and the derivatives of central B-
splines can be obtained in a recursive fashion based on the following property [15, 18]: 
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If f(t) denotes a continuous signal, and βm(t/a) is the B-spline of degree m expended by factor a, 
the convolution between f(t) and the nth derivative of βm(t/a) could be written as:  
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which is based on the differential property of convolution. The B-spline functions become more 
and more Gaussian-like with the degree m increasing [15], and therefore the convolution between 
f(t) and βm(t/a) is really to smooth f(t) by βm(t/a) in (3). Accordingly, W(t) could be taken as the 
dilation of the nth derivative of f(t) smoothed by βm(t/a).  
 
When the signal f(t) is sampled once every T seconds, (3) could be written as:  
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where T is the sampling interval, i represents the sample number, and jT = t. Since βm(kT/a) is the 
discrete representation of βm(t/a), the discrete Fourier transform of the sequence {βm(kT/a)} and 
the corresponding nth derivative are respectively defined as Φm(e

jω
) and Um,n(e

jω
). Figure 2 shows 

the frequency responses of Φm(e
jω

) depending on the values of a and m. When a and m increase, 
the 3 dB cut-off frequency decreases, and the effect of low-pass filtering tends to be more 
noticeable. In Appendix A, we prove that the 3 dB cut-off frequency fc of Φm(e

jω
) is independent of 

sampling frequency when a and m are constants. Moreover, for a given B-spline of degree m, the 
relationship between fc and a displays as following (see Appendix B):  

 
mc faf =⋅  (5) 

where the value of fm is only determined by the degree of the B-spline bias function. According to 
(3), we also know that the 3 dB cut-off frequency of differentiators designed by β

(n)
m(t) is actually 

the 3 dB cut-off frequency fc of Φm(e
jω

). 

 
2.2 The Designs of LPDDs 
(3) tells us how to obtain the nth derivative of a signal. Obviously, a B-spline of high degree can 
well smooth the signal f(t) by convolution. However, it may filter some useful information 
contained in the signal, and need larger computations at the same time. To make the 
differentiators easy and avoid complicated computations, we design the LPDDs by cascading two 
low order differentiators.  
 
Usually, the nth derivative of a B-spline of degree n+2 comprises of piecewise linear polynomials 
(see Appendix C), which could construct each of the two low order differentiators. Table 1 shows 
the designs of the 2nd to 6th order differentiators by cascading two low order differentiators, and 
the first order differentiator is just constructed by the first derivative of the B-spline of degree 5 or 
4. In the progress of the algorithm implementation, f(t) is convoluted with the coefficients of the 
two low order differentiators by using the associative property of convolution as shown in (6). 

 
 

FIGURE 2: The frequency responses of Φm(e
jω

) for different values of factor a and degree m when the 
sampling frequency is 200 Hz. 
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Although it seems like that the two consecutive convolution operations increase the 
computational cost, the convolution operations between f(t) and the two low order differentiators 
avoids calculating the polynomial of high degree in t because the low order differentiator is 
constructed by piecewise linear polynomials. Moreover, different combinations of several low 
order differentiators could construct more high order LPDDs.  
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If {f(iT)} is the input sequence of a single differentiator of degree n, and {y[j]} is normalized output, 
the relationship between y[j] and f(iT) displays in (7).  
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where the value of a is usually a multiple of T, and N is the largest integer less than a∙m/(2T). In 
addition, (8) is derived by the convolution property. So the 3 dB cut-off frequency of the two 
cascading low order differentiators is just that of the differentiator constructed by β

(n1+n2)
 (m1+m2)(t), 

and is also equal to that of the filter constructed by the βm1+m2(t). By using (5), we get the 
corresponding equations of a and fc as shown in Table 1. 
 

The Order of 
Differentiators 

Designs of Differentiators The Relationship Between a and fc 
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TABLE 1: The designs of low-pass digital differentiators (LPDDs) and the relationship between the factor a 

and the 3 dB cut-off frequency fc of the corresponding B-spline filters. 

 
3. THE PROPOSED DIFFERENTIATORS 
3.1 Low-pass Characteristic 
Using (7) and (8), we obtain the frequency response of the differentiator of degree n (n = n1+n2).  
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As can be seen from Figure 3, the amplitude of Hn(e

jω
) is close to the frequency response of the 

ideal differentiator at low frequencies, and rapidly decays to zero with few ripples, making the 
differentiator filter high-frequency noises effectively. 
 
3.2 Flexible and Easy to Control 
The cut-off frequency is one of the key parameters of a filter. (5) and (8) indicate that the cut-off 
frequency of a proposed nth order differentiator is only determined by a. Knowing the effective 
frequency band of the sampled signal, we can use the equation of 3 dB cut-off frequency and a 
shown in Table 1 to obtain the maximum value of a, which is usually a multiple of T. 
 
3.3 Impulse Response Restriction 
If hn[i] denotes the impulse response sequence of a single differentiator of degree n, using (9) and 
(10), we derive  
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Obviously {hn[i]} is a finite-length sequence. If a nth order differentiator constructed by cascading 
two low order differentiators, of which degree are respectively n1 and n2, we can get the impulse 
response sequence  

 ][][][ 2121 ihihih nnnn ∗=+
 (12) 

 
 

FIGURE 3: The solid lines are the frequency responses of the proposed differentiators of degree 1 (a), 
degree 2 (b), degree 3 (c), degree 4 (d), degree 5 (e), and degree 6 (f) when the sampling frequency is 

200 Hz. The dotted lines are the those of the corresponding ideal differentiators. 
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Similarly, {hn1+n2[i]} is also a finite-length sequence. Therefore, the proposed differentiators based 
on B-splines are finite impulse response differentiators. This property is consistent with B-spline 
filters [15]. 

 
3.4 A Low-Complexity Algorithm 
According to (6), calculating the derivative of f(t) is just the discrete convolution between f(iT) and 
β

(n1)
m1(iT/a) without any other filtering algorithms. Moreover, the process of convolutions avoids 

calculating the polynomial of high degree in t, for β
(n1)

m1(iT/a) comprises of piecewise linear 
polynomials. 

 
3.5 A Flexible And Easy To Control Frequency Response Flatness At ω = 0 
The frequency response of the ideal full-band nth order DD is [9, 14]  
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As illustrated in Appendix D, the frequency response of the proposed differentiator of degree n 
satisfies the flatness constraints  
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which is consistent with the frequency response of the proposed differentiators close to the ideal 
DD at low frequencies as shown in Figure 3. 

 

4. SIMULATIONS AND EXPERIMENTS 
4.1 The Input Testing Signal 
Usually, the performance of a differentiator is evaluated by simulating Gaussian signals[5, 14, 19]. 
In our study, a Gaussian pulse function g(t) = exp(-50t

2
) sampled every 5 milliseconds, as 

depicted in Figure 4, was taken as the input testing signal. According to the Fourier transform of 
the input testing signal (Figure 4), we found that the frequency of the input signal containing the 
major components is maintained below 4 Hz. 
 
 
 
 
 
 
 

 
FIGURE 4: The input testing signal (a) and its Fourier transform (b). 
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Values of 
factor a 

The t value of 
the first peak 

the t value of the 
second peak 

The first zero-
crossing point 

The second zero-
crossing point 

4/200 -35/200 35/200 -20/200 20/200 

6/200 -36/200 36/200 -20/200 20/200 

7/200 -36/200 36/200 -21/200 21/200 

8/200 -36/200 36/200 -21/200 21/200 

9/200 -36/200 36/200 -21/200 21/200 

10/200 -37/200 37/200 -21/200 21/200 

12/200 -38/200 38/200 -22/200 22/200 
 
TABLE 2: The positions of characteristic points of the 2nd derivative waveform of the testing signal obtained 

by the proposed 2nd order differentiator. 
Note: the corresponding positions of characteristic points of the ideal 2nd derivative waveform of the input 

testing signal respectively are -35/200, 35/200, -20/200, 20/200. 
 

4.2 The Optimal Factor a 
The method of choosing optimal factor a was displayed by giving an example. Using table 1, we 
know that the maximum value of factor a is 9/200 when the 3 dB cut-off frequency of the 
proposed 2nd order differentiator is not less than 4 Hz. Figure 5a displayed the ideal second 
derivative of the input testing signal and the waveforms derived by the proposed second order 

 
FIGURE 5: (a)The ideal 2nd derivative (―) of the input testing signal, and the 2nd derivatives using the 
proposed 2nd order differentiator at different values of factor a; (b) The ideal 2nd derivative (―), the 2nd 

derivative of the input testing signal contaminated by Gaussian white noise using the 2nd order Savitzky-Golay 
digital differentiator (SGDD) (−∙), and the 2nd derivative using the 2nd order proposed differentiator (---). 
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differentiator at different values of factor a. Additionally, according to Table 2, we found that it 
could get good signal-preservation when a is not more than 9/200. 

 

4.3 The Anti-Noise Capability Of The Proposed Differentiators 
The anti-noise capability was evaluated by adding uncorrelated Gaussian white noise with signal-
to-noise ratio (SNR) = 28.5 dB to the input testing signal. The results derived by the proposed 
second order differentiator at factor a = 9/200 and the second order SGDD by using fitting 
coefficients of fourth-order polynomials on 69 points were compared. The 3 dB cut-off frequencies 
of the two differentiators were both about 4.2 Hz. As can be seen from Figure 5b, both the 
proposed differentiator and the SGDD could restrain the high frequency noises, and the proposed 
differentiator got a smoother waveform than the SGDD. 

 
4.4 The First To Sixth Derivatives Of The Input Signal 
Several derivative waveforms of the input testing signal are used to validate the feasibility of the 
proposed differentiators. Figure 6 displayed the first to sixth derivatives of the input testing signal 
obtained by the proposed differentiators at the maximum value of factor a. 

 

5. DISCUSSION 
This study has presented a new method for designing LPDDs based on B-splines, where some 
examples have been used to validate the reliability and the anti-noise capability of the proposed 

 
FIGURE 6: The first to sixth order derivatives of the input testing signal using the proposed 

differentiators (---), and corresponding ideal derivatives (―). 
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differentiators. The proposed differentiators have some good properties, making them have some 
advantages in obtaining the derivatives of input signals. One is that the value of a could be 
adaptively selected by calculating the maximum allowable value of a. Another is that the trade-off 
between noise-reduction and signal preservation can be made by selecting the maximum 
allowable value of a, when the 3 dB cut-off frequency of differentiators is equal to that of the 
sampled signal. In addition, the cut-off frequency of the proposed differentiators is independent of 
sampling rate. Therefore, the proposed differentiators could be applied to a wide range of low-
frequency signals. 
 
The value of factor a could be adaptively selected. According to the Fourier transform of the 
Gaussian function, the input testing signal components cover the entire frequency range [20]. The 
higher the frequency is, the fewer components of the signal are distributed. Most of the signal 
components are maintained below 4 Hz. Therefore, when the value of a is low, the proposed 
differentiator could preserve more information of the input testing signal because of its high 3 dB 
cut-off frequency (as shown in Figure 2). As a reaches the maximum allowable value, the 3 dB 
cut-off frequency of differentiators is equal to or close to the maximum significant frequency of the 
input signal. In this case, the differentiator could filter out more of the high frequency components 
of the input signal, which displays by the differences of amplitudes of peaks and troughs in the 
two waveforms (Figure 5a). However, the differences of the positions of peaks, troughs, and the 
zero-crossing are little (Table 2). This illustrates the proposed differentiators could preserve 
signal’s original features when a is not more than the maximum allowable value (Figure 6).  
 
Our differentiators could easily get the trade-off between noise-reduction and signal preservation. 
Numerous approaches of differentiators designs have previously been displayed. the SGDD is 
currently one of the most common differentiators, and also is a finite impulse response LPDD [5, 
12]. The SGDDs have many excellent properties [5, 21], but their frequency response have 
several ripples at high frequencies (Figure 1), which may affect the results of SGDDs filtering the 
high-frequency noises. By contrast, the frequency response of the proposed differentiators have 
few ripples (Figure 3), reducing almost all of the high-frequency noises. When a reaches the 
maximum allowable value, the proposed differentiator could get trade-off between noise-reduction 
and signal preservation. That explains the waveform derived by the proposed 2nd order 
differentiators is smoother than that of the 2nd order SGDD (as shown in Figure 5b). In addition, 
the only one key parameter of the proposed differentiator is the factor a, which directly 
determines the 3 dB cut-off frequency of differentiators. Then, using the equation between factor 
a and the 3 dB cut-off frequency, we could get the value of a according to the characteristics of 
the input signal. This makes the proposed differentiators flexible and easy to control, avoiding the 
work of selecting parameters of the SGDDs by testing [13]. 
 
This study proposed a easy method for designing high order LPDDs. There have been several 
studies on the designs of the first order LPDDs [23, 24]. However, high order LPDDs can only be 
constructed by cascading the first order LPDDs one by one in these studies. Therefore, the 
designed high order differentiators are very complicate. The proposed high order LPDD can be 
constructed by cascading only two low order LPDDs, and the coefficients of the differentiator can 
be easily acquired.  
 
Finally, it is important to note that the cut-off frequency of the proposed differentiator is 
independent of sampling rate according to (5). Consequently, our differentiators are not limited by 
the signals with a wide range of applications. In addition, further studies in reducing the transition 
band of the proposed differentiator are required to improve the anti-noise capability of the 
differentiator. 

 

6. CONCLUSION  
The primary goal of this paper is to introduce a method for designing any order LPDDs. Several 
examples of the designs of the first to sixth order differentiator and some simulations were 
presented to validate the feasibility of this method. All these properties analysis and simulations 
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indicate that the differentiators designed by the proposed method could be well suitable for 
different types of low-frequency signals, and the trade-off between noise-reduction and signal 
preservation could be made by selecting the maximum allowable value of a. But yet the behavior 
of the proposed differentiators needs to be tested in a wide range of situations, including the 
applications in reality. Further work also needs to concentrate on reducing the transition 
bandwidth to further improve the anti-noise capability of the proposed differentiators, especially 
for high order differentiators. 

 
7. APPENDIX 
7.1 Appendix A 
Let g[n] denote the discrete representation of βm(t)  
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where T designates the sampling period. The Fourier transform of βm(t) and the discrete 
transform of g[n] are  
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Now let fm, ωc respectively denote the 3 dB cut-off frequency of S(ω) and the normalized cut-off 
angular frequency of G(e

jω
).  
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Using (A.4) and (A.5), we can derive  
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7.2 Appendix B 
The Fourier transform of βm(t/a) is given by  
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Let fc denote the 3 dB cut-off frequency of F(ω). Using (A.4), we derive  
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7.3 Appendix C 

 
Parameters Representations 
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TABLE 3: The representations of the nth derivative of b-spline bias functions of degree n+2. 

 
7.4 Appendix D 
Let Hn(e

jω
) denote the frequency response of the proposed differentiator of degree n that can be 

written as  
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where n is the value of n1 and n2 (n > 1), T is the sampling period. The nth derivative of βm(t) is 
derived by [22]  
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Setting m = m1 + m2, ω = 0, (D.3) becomes  
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And the nth derivative of Sn(ω) at ω = 0 is  
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Then we can get the frequency response of the proposed differentiator of degree n at ω = 0, as 
well as the nth derivative of Hn(e

jω
) from (D.1), (D.2), and (D.6). 
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