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Abstract 

 
Since multi-targets often occur in most applications, it is required that multi-robots are grouped to 
work on multi-targets simultaneously. Therefore, this paper proposes a control method for a 
single-master multi-slave (SMMS) teleoperator to control cooperative mobile multi-robots for a 
multi-target mission. The major components of the proposed control method are the robot-target 
pairing method and modified potential field based leader-follower formation. 
 

The robot-target paring method is derived from the proven auction algorithm for a single target 
and is extended for multi-robot multi-target cases, which optimizes effect-based robot-target 
pairing based on heuristic and sensory data. The multi-robot multi-target pairing method can 
produce a weighted attack guidance table (WAGT), which contains benefits of different robot-
target pairs. The robot-target pairing converges rapidly - as is the case for auction algorithms with 
integer benefits.  
 
Besides, as long as optimal robot-target pairs are obtained, a team is split into subteams formed 
by paired robots regarding types and numbers of the robot-target pairs with the robot-target 
pairing method. The subteams approach and then capture their own paired targets in the 
modified potential field based leader-follower formation while avoiding sensed obstacles.  
  Simulation studies illustrate system efficacy with the proposed control method for multi-target 
operations. Moreover, the paper is concluded with observations of enhanced system 
performance. 
 
Keywords: Teleoperation, Multi-target Operations, and Multi-agent Systems. 

 
 
1. INTRODUCTION 

Cooperative control of multi-agent robotic systems has been investigated in recent years [36, 47], 
especially for tasks that cannot be handled by a single robot. It can improve dexterity of robots 
and enlarge application fields of robots. Furthermore, Fox et. al. [19] have demonstrated that 
multi-robots can localize themselves faster and more accurately if they exchange information 
about their positions whenever they sense each other. Moreover, using several low-cost robots 
introduces redundancy and therefore is more fault tolerant than having only one powerful and 
expensive robot. Therefore, there have been many cooperative control methods, e.g. the 
behavior based formation control, virtual structure approach, leader-follower approach, and 
potential field based control method for multi-robot navigation and searching [2,12,26,29,42,43]. 
  Balch and Arkin [2] presented behavior based formation control. The temporary distortion in a 
formation was used to avoid obstacles. However, the system is not able to be analyzed in terms 
of simple mathematic equations. Therefore, exact formation control of the system cannot be 
guaranteed. Lalish et. al. [26] suggested the virtual structure approach by considering the robot 
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formation as a single virtual rigid structure. The behavior of the whole group is totally predictable, 
and its formation is precisely maintained. However, a wider inter-robot communication is 
necessary, which causes more communication delays. Desai et. al. [12] proposed a leader-
follower approach. One or more robots are designated as the leader(s) and responsible for 
guiding the formation. The other robots are required to follow the leader(s) with predefined 
clearances. This leader-follower approach has some benefits, e.g. its simplicity, modularity, and 
reliability of the system and no need for heavy computation. However, the whole team is 
potentially subjected to system malfunctions if the leader(s) break(s) down. In addition, there is a 
risk that the followers get too close to each other while only keeping a constant leader-follower 
distance without considering the follower-follower distances. Due to no interconnection between 
the followers, the follower cannot distinguish between its team robots and obstacles. Therefore, if 
the robot-robot distance that the robot needs to maintain in the team is different from the robot-
obstacle distance that the robot needs to keep from the obstacles, the follower may hit the other 
robot or obstacle. Artificial potential functions have been extensively used for multi-robot 
navigation and control [3,8,14,20,29,41,44]. The robots are attracted to the target while being 
repulsed from the obstacles as if the robots and obstacles as positive ions and the target as a 
negative ion were in potential fields. 
 
By comparing those above mentioned approaches, the potential function based approaches 
seemed to be useful tools from the view points of flexibility of configurations of robotic teams, 
automatic avoidance of collisions of team robots, and stability of maintaining formations. 
However, the multiple fields can sum to a vector with a zero magnitude. If the robot was being 
attracted to a point behind the box canyon, the attractive vector would cancel the repulsive vector 
and the robot would remain stationary because all forces would cancel out.  This is called a local 
minima problem [2,21,29,38,48]. 
 
Besides, all control methods discussed above for the robot cooperation are only for the fully 
autonomous robots. Nonetheless, the unstructured nature of the worksite environments and the 
limitations of the current sensors and computer decision-making technologies prohibit the use of 
fully autonomous systems for the operations [1,17,18,22,27,28,37]. Therefore, it is required that 
the human decision making be involved in the systems. Teleoperators, in which a human 
operator is an integral part of the control, are established to integrate the human decisions to the 
control loop of the systems. In order to minimize the required human resources and amplify the 
human effort, a single-master multi-slave (SMMS) teleoperation is considered in this paper 
[17,18, 22, 27, 28, 33,37]. 
 
Nevertheless, that a teleoperated robot may be of varying types with varying capabilities and 
limitations places significant cognitive pressure on the operator. As has been demonstrated in 
urban search and rescue activities [19], simply remotely operating a robotic system in a 
challenging environment precludes significant secondary cognitive effort (such as scanning 
rubble for survivors). The difficulties will be compounded when the human operator remotely 
guides multiple robots in a rapidly evolving operational environment. Therefore, it is required that 
some local robotic intelligence is added to the SMMS teleoperator to relieve human burden and 
enhance the performance. Nonetheless, so far a few papers have discussed the semi-
autonomous SMMS teleoperation issues. Moreover, most of them were only focused on a single 
target operation. 
 
However, most applications [45,46] e.g. military operation, space exploration, rescue mission, 
and etc, require a team of robots to form several subteams to capture multi-targets 
simultaneously. Therefore, the robot-target pairing method is needed to identify a proper target 
that can be captured by a suitable subteam of robots. Many different methods have been widely 
applied in fully automatic coordinated multi-robotic systems [9,11,15,30,32,35,39]. Those 
methods are a genetic or improved genetic [9,10,16,34], ant colony system [15,30], swarm 
particle optimization (SPO) [11,32], market-based approaches [13,23,24,31], and auction or 
decentralized cooperation auction [25,35,39]. Nonetheless, some of them [9,30,32] can have a 
slow convergence to the global optimum when the others [13,39] have no ability to stably 
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converge to a global optimum. Hence, Bogdanowicz and Coleman et. al. [4] proposed a pairing 
method for optimization of effect-based weapon-target pairing to decide a preferred weapon-
target combination by scanning a heuristic attack guidance table. Different from those previously 
mentioned methods, it is a rule and function based method. Therefore, it can converge rapidly 
and produce a suboptimal solution stably. Nonetheless, it is derived based on some heuristic data 
that come from human experiences. 
 
Due to the above mentioned problems, in this paper, the primary objective is to develop a control 
method for a SMMS teleoperation system to cooperatively control mobile multi-robots for a multi-
target mission. Primary components of the proposed method are (1) modified potential field 
based leader-follower formation and (2) robot-target pairings. During the operation, the human 
operator only concentrates on teleoperating a team leader robot. All other team robots 
autonomously make a formation with regard to its positions and velocities based on sensory 
information. Therefore, the formation is able to be adapted by modifying their paths for obstacle 
avoidance and target pursuit in the modified potential field based leader-follower formation. As 
soon as the team is near the multi-targets, with the proposed robot-target pairing method, optimal 
robot-target pairs are computed, and according to them, the team is autonomously split into 
several subteams that are paired to appropriate targets. A subteam leader is selected based on 
all robot functionalities and proximity to targets to lead each subteam. Each subteam leader is 
able to guide all subteam robots to work on the paired targets when the subteam robots move 
with respect its motion. 
 
The rest of this paper is organized as follows. In Section 2, the control method that integrates the 
primary components to capture multiple targets simultaneously with multiple subteams 
independently for is proposed. This system with the proposed control method is aimed at relieving 
human operator burden of teleoperating a robot team that is formed by several sub-teams in a 
complex environment to handle multi-targets simultaneously. In Section 3, the conditional 
transparency [5], i.e. the transparency if no human induced error is found, and effectiveness of 
the task achievement of the SMMS teleoperation system with the proposed control method were 
evaluated through simulation studies. Section 4 concludes this paper and shows future research 
directions. 
 

2. SEMI-AUTONOMOUS TELEOPERATION CONTROL METHOD FOR A 
MULTI-ROBOTS-MULTI-TARGETS APPROACH 

This paper proposes a control method for the semi-autonomous SMMS teleoperation to work on 
a multi-target mission. The major components of the control method are (1) modified potential 
field based leader-follower formation and (2) robot-target pairings. They are described in details in 
the following. During robot navigation to targets, a team/subteam moves in (1) modified potential 
field based leader-follower formation. Nonetheless, as long as the team is close enough to the 
targets, it will be split into subteams that are paired to suitable targets with (2) robot-target pairing 
method. Therefore, in the following, the two components are discussed and formulated in detail. 
 
2.1 Modified Potential Field Based Leader-follower Formation 
In order that the slave multi-robots can autonomously avoid the obstacles and keep a distance 
from other neighboring robots simultaneously while tracking the target, the approach that the 
most commonly has been used is potential field based formation control. Nonetheless, the 
potential field based formation control has the local minima problem [29], which can hold the 
robots in a specified formation while in motion. Therefore, the potential field based formation is 
modified into the one with a prioritized bonding between slave neighboring robots in this paper. 
The strength of the bonding between neighboring robots varies depending on which two robots 
are connected.  
 

For example, the bonding between neighboring team/subteam Leader and 1−Follower is the 

strongest when the one between team/subteam nFollower − and Leader is the weakest if there 

are n robots. Furthermore, as soon as the subteam is formed, only bonding between subteam 
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robots exists when the subteam followers move only with regard to their subteam leader. Thus, 
the team/subteam formation becomes adaptive due to attraction to targets and repulsion from 
obstacles. However, no team/subteam robot is left behind due to the robot-robot bonding with 
different strengths, and no subteam robot movement is affected by other subteam/team robot 
motion because of the elimination of the bonding between the subteam and irrelevant robots. 
 
Besides, the team leader tracks the human commanded positions when the subteam leaders 
follow the reference positions to capture the targets and avoid obstacles and neighboring robots. 
In the potential field based leader-follower formation, all team/subteam follower paths are 
generated by a sum of attraction, repulsion, and prioritized bonding. All team/subteam leader 
paths are computed by a combination of the attraction and repulsion. In our discussion, we 

assume that for Robot i , the control input, 
i

i
u generated by using the potential field based leader-

follower formation method are typically of the form. 
 

                                                           
i

b

i

r

i

a

i

i
uuuu ++=                                                         (1) 

 

where for Robot i , 
i

a
u is the control input caused by the attraction to the targets. 

i

ru is the control 

input caused by the repulsion from the obstacles. 
i

bu is the control input caused by the robot-robot 

bonding for the team/subteam followers. 
i

bu can become zero for the team/subteam leaders. In 

the following, the control inputs due to (1) the attraction to the targets, (2) repulsion from the 
obstacles, and (3) bonding between robots are formulated and discussed. 
 
2.1.1 Attraction to Targets 

The control input 
i

au in Eq (1) derived from the target potential functions for the robot is 

formulated in Eq. (2). 
 

                                                               Ti

i

a
xu δϕ=                                                             (2) 

 

where Txδ is the sensed distance between Robot i and the paired target. Robot i can be any 

robot in a team or subteam. iϕ is a positive integer that becomes zero if the target is reached; 

otherwise, it is larger than zero. As shown in Eq. (2), if Robot i is getting closer to the paired 

target, 
i

au  is decreased. On the contrary, if it is leaving the paired target, 
i

au is increased. 

Therefore, it is attracted to the paired target all the time. 
 
2.1.2 Repulsion from Obstacles 

The control input 
i

ru in Eq (1) derived from the obstacle potential functions is written in Eq. (3). 

 

                                                  11 VbDku ee

i

r δδφ −−=                                                    (3) 

 

where for Robot i , six

G xV &
2
0

1 ∂
−=δ , and 2

0
1 x

HD
∂

−=δ . oxδ  is the sensed robot-obstacle distance. 

six is the position vector of Robot i . φ , G , H , ek , and eb are positive parameters. In Eq (3), 

i

ru  is increased when Robot i is heading toward obstacles. On the contrary, 
i

ru  is decreased 

when it is steering away from the obstacles. Thus, it is repulsed from the obstacles all the time. 
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2.1.3 Bonding Between Robots 

For team/subteam followers, the robot-robot bonding 
i

bu in Eq. (1) is prioritized regarding the 

roles of the neighboring robots and formulated in the following equation. 
 

                                                   ( )siisij

i

b xrku δ−−= min                                                        (4) 

 

where for ni ......1=  and nj ......1= , ji ≠ , ijk is the positive parameter. The bonding strength 

varies because of different roles of the neighboring robots bonding to each other. isr min
is the 

preferred distance that Robot i  needs to keep from neighboring robots. sixδ is the sensed 

distance between Robot i  and other robots. Therefore, the team/subteam followers move with 

regard to their team/subteam leader motion while keeping a predefined constant distance from 
team/subteam leader with Eq. (4) All team/subteam robots can also get around the obstacles with 
Eq. (3) and move toward the targets with Eq. (2) 
 
2.2 Robot-target Pairing Method 
The robot-target pairing method is sensor based and semi-distributed because all robots act 
largely independently in terms of planning for themselves but are able to take into account team 
resources by working on the tasks with other robots. It is more flexible than the centralized robot-
target pairing method [9,30,32] in that each individual robot can respond to different environment 
stimulus independently relying on its local sensory information. In addition, it is also more robust 
and reliable than the distributed robot-target pairing method [13,39] in that each robot also can 
take advantage of sharing team resources to work with other team robots. In this paper, the team 
leader not only takes human commands via a master robot but also works with the robot-target 
pairing method as an auctioneer to send and show all bid data e.g. robot-target distances and 
their base prices. The bid data are also online shared by all robots, team leader and followers. All 
other robots, e.g. team followers, act as bidders to form a subteam by themselves in order to 
maximize a sum of all follower bid values and bid on the targets when the corresponding task on 
the targets is performed by the cooperation of the subteam. In the subteam, the bidder with the 
maximum bid value is selected as a subteam leader. The subteam leader is responsible for 
monitoring and coordinating all subteam member actions. According to the largest bid proposed 
by the subteam, the auctioneer, the team leader, decides which subteam wins the bid with a 
restriction that only one target is gained by every subteam per auction. If all subteam bid values 
are smaller than the base price, or any team robot cannot compute its bid value due to insufficient 
sensed data surrounding the targets, the auctioneer obtains the bid. If any subteam already 
completes the task on the target, it will inform the auctioneer to cancel the bid. The proposed 
robot-target pairing method is formulated and further discussed in the following. 
 
2.2.1 Robot-target Pairing Formulation and Discussion 

Consider such a scenario, in a two-dimensional and limited rectangular environment X with 

Cn square cells, pn slave robots pursue en targets, for ep nn > . The set of the robots is denoted 

by a matrix of [ ]
pnaaaA .......21=  where 

pna is a robot matrix of pn . Robot Capability Vector j  

for Task t  is denoted by 
t

jĈ , pnj ≤≤1 and the set of targets is represented by a target matrix of 

[ ]
enTTTT .......21=  where 

enT is a target matrix of en . The vector representing the capability 

required to accomplish Task t  on TargetT  is denoted by 
T

tC , enT ≤≤1 . Agent TA ∪ denotes 

robot teams and targets. For simplification, we assume that both space and time can be 
quantized, therefore the environment can be regarded as a finite collection of cells, denoted by 

]....2,1[ cc nX = .There exist some static obstacles with fixed sizes and regular shapes, and their 

locations are determined by the mapping ,1,0: →cXm for ( ) 1, threshxMXx c ≥∈∀  indicates 
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that the cell x  is occupied by obstacles. ( ) 2, threshxMXx c ≤∈∀  indicates that the cell x  is 

free, where 12 threshthresh <  represents the threshold value between 0 and 1. Thus, each 

robot has different capabilities to complete different tasks on different targets. 
 

Robot capability - For Task t  and Robot j , the weighted capability vectors of Robot j can be 

defined as  
 

                                         { }[ ]Tt

ju

t

j

t

ju

t

j

t

j

T

j

t

j ccbbbdiagwC .......ˆ
121=                                              (5)   

 
where u  is the maximum number of the vectors, each of which represents the individual 

functionality. The set of robot matrices is rewritten into 
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 where vn , for pv nn ≤<0 , 

is the total number of the robots in the team, and r , for enr ≤<0 is the total number of the 

tasks. 
t

jkc  is a capability vector for Functionality k and Task t . 
T

jw  is a positive integer such that 

for TargetT and Robot j , the following is satisfied. If the robot is assigned to the target, 0=T

jw ; 

otherwise, 1=T

jw . The uu × dimension diagonal matrix of 
t

jub  is used to estimate the 

percentage of possibility of using the 1×u  dimensional capability vector 
t

jC  to do Task t  by 

Robot j successfully. However, if Robot j  does not have Capability 
t

jkc , then 
t

jub  is 0. Each 

robot matrix in A  has weighted capability vectors, e.g. for Robot j and Task t , [ ]Tt

jjt Ca ˆ= . 

 
Capability Required Executing Tasks on Targets  
It is assumed that one target can be paired to two or more robots, but one robot can only be 

paired to one target. The capability vector that is required to accomplish Task t  on Target T  is 

defined as 
 

                                                 { } tu

T

tu

T

t

T

t CdiagC ββ ....
1

=                                                      (6) 

 

where the uu × dimension diagonal matrix of 
T

tuβ  is used to describe the percentage of possibility 

of using the 1×u dimension capability vector tuC with which the robot can finish Task t  on Target 

T . [ ]T

tuttu ccC ......
1

= when the total number of the vectors of the functionalities is u . tuc  is the 

capability vector that is required to complete Task t  with Functionality u . However, if Task t  

cannot be done successfully by any robot with the capability tuC on TargetT , then 
T

tuβ is 0. 

Otherwise, 
T

tuβ is 1. 

 
Subteam Capability  
The subteam is a combination of the multi-robots that work on Task t  cooperatively. For Robot 

j  and Task t , ( ) tjtj eaU =,  where te is one if Task t  is assigned; otherwise, it is zero, and ja is 

defined in Eq. (1) for 
minmax

aja ≥≥ , 1
min

≥a  , and pna ≤max  where 

( ) sp naan =+− 1/ minmax  where sn  is the total number of subteams, and 
max

a  and 
min

a are the 
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number of the first and last robots forming Subteam y , respectively. Subteam y is represented 

by a matrix of 

















=

),(),(

)1,()1,(

maxmin

maxmin

........

...........................

......

rara

aa

y

UU

UU

D where r  is the total number of tasks. Then, matrix 

A  denoting a robot team formed by subteams, one of which is represented by yD , is rewritten 

into { }qy DDDA .........1=   where q  is the total number of the combinations of multi-robots 

(robot subteams) in the team. For Robot j  and Task t , if 0ˆ >t

jC , then 

 

                                                        ( )
t

jtj CQ ˆ
, =         for     1≥≥ jn p                                    (7) 

 

where { }
),(),1( ..... tnt p

QQQ =  is a positive integer. Subteam y  capability vector for Task t is 

defined as 

                                                             ∑
=

=

=
a

b
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where 
ab

yy − , 
ab

yy ≥∀ , is the total number of the robots in Subteam y . 
a

y  is the first and 

b
y is the last indices of the elements in the matrix of Q  for Task t  and Subteam y .  Subteam y  

is able to perform Task t  on TargetT  if the condition, 
y

tyy

T

t ba
CC ),:(

~
≤ ,  is satisfied. Robot j  is 

selected as a subteam leader when its magnitude of the capability vector 
t

jĈ is largest in the 

same subteam. It is assumed that the subteam leader knows all capability information about its 
subteam members. 
 
2.2.2 Bidding Winner Determination 
 

 
 

TABLE 1: Weighted Attack Guidance Table (WAGT) 

 

In Table 1, nNm ,  is a positive integer weight for Subteam n  to bid on Target N . If ( )
n

Nyy ba
C ,:

~
 is 

smaller than the base price which is a positive integer, or Target N  has already been assigned to 

Robot Subteam n , nNm ,  is 0. Otherwise, nNm , is 1. By arranging nNm , and 
N

n
B into Table 1, 

called Weighted Attack Guidance Table (WAGT), each row of WAGT corresponds to a target and 

Robot Subteam (1 to n ) when n  is the total number of the subteams formed in the team. In 

addition, each column of WAGT corresponds to a robot combination (Robot Subteam) that works 

on Targets (1 to N ) when N is the total number of the targets. Therefore, there are the N rows 

and n  columns in WAGT. The scanning proceeds from the first to the last column. Hence, the 

robot combination (Robot Subteam) specified in column i  takes precedence over combination of 
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robots specified in column 1+i . For example, for Subteam n , Task t , and Target N , the bid 

value is weighted as follows. 
 

                                                 ( )( )N

tn

N

t

n

tyy

N

n XCCB
ba

−−= 1
~

),:(                                             (9) 

 

where
N

tn
X  is the positive integer weight for Subteam n  to do Target N . If Task t  is the most 

preferred by Subteam n  to be done on Target N  when 
N

n
B  is the maximum value of the 

element in the matrix of ( )nNB ,
~

 , then 
N

tn
X =0. Otherwise, 

N

tn
X =1. Therefore, based on the 

given subteams, targets, tasks, WAGT, and optimization of the robot-target pairing that is 
described below, the bidding winner determination is made. 
The optimization of the robot-target pairing is formulated as follows. Given Subteam y , Targets 

N , Tasks t , and WAGT, an assignment of the subteam is found in such a format that WAGT is 

produced, and its corresponding objective function in Eq.(10) is maximized within the given 
constraints in Eqs. (11) and (12). Therefore, we can state the optimization problem as follows. For 

Target N  and Subteam n−1  as seen in Table 1, the objective function is 

( ) ( )[ ]
nN

N

nN

N mBmBNObjFun ,1,1 ......)( = . 

 

                                             Maximize            )(NObjFun                                                (10) 

 
Subject to 
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where yNm ,  is defined in Table 1. Initially, all yNm ,  is equal to one if no subteam is assigned to 

any target. However, if Subteam y  is assigned to Target N , yNm ,  is equal to zero 0& ≠∀ Ny  

. Hence, Subteam y that proposes the maximum affordable value )( , yN

N

y mB  can win Target N  

by solving Eqs (10) within the constraints Eqs. (11) and (12). By using the proposed robot-target 
pairing method, the robot-target pairs are stored into the resulted matrix e.g. a subteam-target 

pair matrix 
I

J  and given WAGT. For instances, Subteam y  is paired to Target N  when 

Subteam )1( +y  is paired to Target 1+N . The subteam-target pair matrix, 
I

J  is written as 

[ ]1,.., += NNJ
I

when the first and second columns of the 
I

J  represent which target is 

properly paired to Subteam y  and 1+y , respectively. In order to make the system be able to 

split its team into subteams to work on different targets simultaneously, the robot-target pairing 

method can also generate reference positions 
r

X  to each subteam robot to move toward its 

target point by transforming 
I

J  based on WAGT. 

 
2.3 SMMS Teleoperator With Modified Potential Field Based Leader-follower Formation 

and Robot-target Pairing Methods 
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Figure 1 represents the overall architecture of the SMMS teleoperation system with the proposed 
control methods. The master and slave subsystems in Figures 1(a) and 1(b), respectively, are 
connected over the wireless internet. The difference from the system proposed in our papers [5] 
is that the slave subteam is operated fully autonomously with the modified potential field based 
leader-follower formation method when the team leader is teleoperated by a human operator. 

 
                                  (a) Master subsystem 
 

         
                  (b) Slave subsystem (leader/follower) 
               
                     FIGURE 1: Modified SMMS system 

 
In order to simplify a problem, the robot is not supposed to move so fast that the nonlinear 
coefficients of the robotic dynamic equation can be ignored. The proposed system shown in 
Figure 1 can be formulated into the following equations of motion with integration of the modified 
potential field based leader-follower formation and robot-target pairing methods. 
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Master robot: 

                                                0=++
mmmmmm

eKeBeM &&&                                                 (13) 

 

Slave robot i : 

                               ( ) i

b

i

r

i
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where for Robot i , 
i

a
u , 

i

r
u , and 

i

b
u  are defined in Eq (1). 

hmm
xxe −= , 

h
x  and 

m
x  are the 

human commanded and master sensed position vectors, respectively. 

( )( )
hidealmsisi

xxxxe ′−+′−= σσ 1 , 
si

x  is the position vector of the slave robot i . 
m

x′  is the 

transmitted master position vector. 
ideal

x′  is the reference position vector computed with respect 

to 
m

x′ before a subteam is formed or 
r

X  generated by transforming 
I

J  resulting from Eqs (10)-

(12) based on WAGT  after the subteam is formed.  σ  is the control parameters of Robot i . 

When Robot i  is selected as a team leader, σ  is turned into one; otherwise, it becomes zero. 

When Robot i  is appointed as a subteam leader, λ becomes one; otherwise, λ  is zero. 
m

B  is 

the master adaptive impedance matrix. 
m

M  is the inertia matrix of the master robot. 
m

K  is the 

control parameters for the linear diagonal master matrices. 
si

M  is the inertia matrices of the 

slave robot i . 
si

B  is the slave impedance matrix. 
si

K  is the control parameters for the linear 

diagonal slave matrices.  
 
By using Eqs. (13) and (14), the motion of the SMMS systems can be understood and modeled. 
The team moves toward a region full of multi-targets in the modified potential field based leader-
follower formation when only team leader is teleoperated by the human operator via the master 
robot and followers autonomously move with regard to its motion.   When the team is close to the 
targets, it can be split into subteams paired to targets with the robot-target pairing method by 

solving Eqs (10) within the constraints in Eqs (11) and (12). The robot-target matrix 
I

J  is 

computed based on WAGT and transformed into the reference positions for the subteam robots 
to approach and capture the paired targets. During navigation to the paired targets, the subteams 
automatically move in the modified potential field based leader-follower formation again. In the 
formation, all subteam followers move with regard to their subteam leader's motion while the 

subteam leader approaches a target point computed from
I

J . All subteam robots including the 

leader and followers can avoid obstacles while maintaining a formation. After the paired target is 
reached, a task, e.g. target capture, is performed by the paired subteam robots. 
  In the following section, the SMMS teleoperator modeled in Eqs (13) and (14) is simulated for a 
further study on enhancement of the performance in terms of conditional transparency [5] and 
task effectiveness. 
 

3. SIMULATION STUDIES 
In order to qualify and highlight the enhanced SMMS teleoperator performance, the scenario was 
that the SMMS system in Figure 2 with the one in [6,7] in Sim (1) and the proposed control 
methods in Sim (2)were properly simulated. Furthermore, Sim(1) and (2) were also subjected to 
the time-varying communication delay as shown in Figure 3. Results from Sim (1) and (2) are 
generated and compared to quantify and qualify the improvement of the performance in terms of 
conditional transparency [5] and task effectiveness. The simulation data from Sim (2) are 
discussed with findings from the research [9,13,32,39] to explicitly show advancement of 
convergence to an optimal solution to identify an appropriate subteam robot-target pair. The Sim 
(1) and (2) were set up in Table 2. 
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Human 

Operator

Master 

Positions

Master & Slave Positions

 
 

FIGURE 2: SMMS teleoperation simulation setup 
 

 
 

FIGURE 3: Time delays in simulations 
 

 
 

TABLE 2: SMMS simulations for a multi-target mission 

 
In simulations, the time dependent communication delay was simulated in Figure 3. The 
maximum communication delay of 0.1 second was chosen in the simulations because for the 
earth application, there is a critical value, beyond which the system tends to become unstable 
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[40]. In the simulations, as shown in Figure 2, the master robot was a joystick connected to a 
laptop that read human operator motion commands. It was able to transmit human commands to 
a virtual slave robot model over the simulated TCP/IP internet. The virtual slave robots in Figure 
2(b) including a team leader, subteam leaders, and followers were modeled in Matlab software 
and able to track the transmitted master and reference positions and velocities to execute the 
assigned tasks on the assigned targets. The slave robots also locally sensed the environments 
and then sent back the sensory information to the master robot. In the simulations, the slave 
robots were simulated as seven holonomic mobile platforms, each of which has two active 
wheels, and they formed a slave team. In addition, all of them did not have grippers. Moreover, 
there were six virtual static obstacles and two virtual targets in a virtual environment as shown in 
Figure 2. All target and robot positions were assumed to be known in the simulations, but 
obstacle positions were uncertain. The obstacles and targets were modeled as mass-spring-
damper systems [40] in the following equations. 
 
Targets: 

                                                      
TTTTTTT

FxKxBxM =++ &&&                                         (15) 

 
Obstacles: 

                                                       
ooooooo

FxKxBxM =++ &&&                                           (16) 

 

where 
T

M  and 
o

M  are the inertia matrices of the targets and obstacles, respectively. 
T

B  and 

o
B  are the damping coefficients of the targets and obstacles, respectively. 

T
K  and 

o
K  are the 

stiffness coefficients of the targets and obstacles, respectively. 
T

x and 
o

x  are the position 

vectors of the targets and the obstacles, respectively. The seven slave robots were run to 
approach two targets, Target A (TA) and B (TB), while getting around the seven static obstacles. 
All targets, TA and TB, were static. The simple task, object capture, was performed by the slave 
robots simultaneously. Each of the targets was captured by at least three mobile robots. TA and 
TB were fixed on the ground. They were being captured while being encircled by the slave robots. 
The simulations, Sim (1) and Sim (2), as shown in Table 2, were set up with the following 
parameters. The desired safety distance between two robots was set to 3 m. The minimum 
distance between a robot and an obstacle was set to 5 m. Six circular objects with the radii of 5 m 
were used as obstacles in each simulation. In the simulations, the six circular obstacles, Ob1, 
Ob2, Ob3, Ob4, Ob5, and Ob6, were situated at (30, 60), (50, 40), (70, 20), (70,-20), (50,-40), 
and (30,-60), respectively. Another two circular objects with the radii of 5 m were also used as 
targets in each simulation. Two targets, TA and TB, were situated at (90, 30) and (90, -30), 
respectively, as shown in Figure 4 and 7. The seven slave robots, R1, 2, 3, 4, 5, 6, and 7, were 
initially located at (0, 15), (0, 10), (0, 5), (0, 0), (0, -5), (0, -10), and (0, -15), respectively. Only two 
directions parallel to the ground were considered in the simulations. Each slave robot was 
represented by a circular object with a radius of 1 m in the simulations. The master and slave 
positions were simulated in a computer with Matlab and divided by 10, respectively. In the 
simulations, the following parameters were used: 
 

m
M  = 3 kg,  

m
B  = 6 Ns/m, 

m
K =6 N/m,  

si
M = 30 kg,  

si
B = 1.0 Ns/m, 

si
K  = 60 N/m,  

T
M  = 

60 kg, 
T

B  = 0.0 Ns/m, 
T

K  = 800 N/m, 
o

M  = 6000 kg,  
o

B = 0.0 Ns/m, 
o

K  = 1000 N/m, G  = 

H  = 1, 
e

k  = 100, 
e

b  = 60, 
mini

r  = 5, 
mins

r  = 5, 
i

ϕ  = φ  = 10000, and ijk = )/1/1(50000 ji +  

 
In the simulations, no friction, gravity, and air resistance were assumed in the virtual environment. 

The position errors are 
m

e and 
si

e . The simulations, Sim (1) and (2), as listed in Table 2 were 

conducted by the same human operator for consistency. All slave robots were programmed to 
move at an average speed of 0.1 m/s in the virtual environment in order to evaluate the 
effectiveness of the proposed systems by measuring the length of time taken to complete a task.   
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3.1 Simulation - Sim(1) 
In Sim (1), the seven robots formed a team teleoperated by a human operator via the master 
robot. The human operator remotely controlled the team leader, R4, to reach TA, and all other 
slave robots, R1-3 and R5-7, were coordinated with R4 to surround TA to capture it. After the TA 
was captured, the human operator commanded R4 to move to TB while other robots, R1-3 and 
R5-7, were also moving with regard to R4 motion to approach TB. During the team navigations to 
catch TA and TB in Figure 4, all team robots were able to avoid the obstacles, Ob1-6, while they 
kept a constant distance from each other. As long as R4 was telecontrolled by the human 
operator to get to TB, R1-3 and R5-7 encircled and captured it. 
 

In Figures 5 and 6, position errors 
si

e  of the team leader and followers were presented, 

respectively. The position errors varied from 2.5 to 0 (m), which was caused by the time-varying 
communication delays. However, a position error average, 0.65 (m), was still acceptable because 
the team leader robot (R4) teleoperated by the human operator moved slowly when the follower 
robots (R1-3, 5-7) moved with regard to R4 positions. All targets were captured in 1350 seconds.    

 
 

FIGURE 4: Sim(1) - Actual Path Trajectories 

 
 

FIGURE 5: Sim(1) - Slave Positions Errors in the x-direction 
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FIGURE 6: Sim(1) - Slave Positions Errors in the y-direction 
 

3.2 Simulation - Sim(2) 
In Sim (2), the task, object capture for two targets, TA and TB, was executed by the subteams 
formed by the seven mobile robots. The seven robots, R1-7, could form 35 types of Robot 
Combos (Subteams (Sub1-35)) as shown in Table 3. 
 

 
 

TABLE 3: Robot combinations (robot subteams) 
 

With the robot-target pairing method in Eqs (1) – (12), WAGT was generated. Subteams (Sub1 - 
35) and their bids for the task were found for TA and TB in Table 4. Their bids were calculated in 
Eq. (9) as an inverse of the sum of robot-target distances in a subteam minus the base price 
when the base price for the task was 10. The reason was that in order to start with the tasks, the 

robots needed to maintain at least 10(m) from a target to capture it. The bids ( )
ba

TT , in Table 4 

were written where 
a

T  was the bid values calculated for TA when 
b

T  was the bid values 

calculated for TB. 
 



Y. Cheung & J.H. Chung 

International Journal of Robotics and Automation (IJRA), Volume (2) : Issue (2) : 2011 121 

 
 

TABLE 4: Weighted Attack Guidance Table (WAGT) for Target A & B 
 

  As shown in Figure 7, only R4 was teleoperated by the human operator when all R1-3 and R5-7 
automatically formed two subteams, (R1-3 and R5-7 combos) to capture TA and TB 
simultaneously in 625 seconds, respectively. However, R4 was not engaged in any task, which 
could reduce the time delay effect on the task achievements. All tasks were done by the two 
subteams, Sub1 and Sub35, fully autonomously. The position errors were from 0 to 0.12 (m) in 
Figures 8 and 9, and a position error average was 0.05 (m). 
 

 
 

FIGURE 7: Sim(2) - Actual Path Trajectories 
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FIGURE 8: Sim(2) - Slave Positions Errors in the x-direction 

 
 

FIGURE 9: Sim(2) - Slave Positions Errors in the y-direction 
 
3.3 Discussions on Results 
 

 
 

TABLE 5: Performance comparison for robot-target pairing methods 
 
By comparing those errors in Figures 8 and 9 and 5 and 6, the performance of the system in Sim 
(2) was better than that in Sim (1) when the simulations showed that in Sim (2), the task was 
finished more quickly, and the position errors were smaller. The reasons were (1) the amount of 
information transmitted over the time-varying links between the master and slave subsystems 
became less in Sim(2) than Sim(1) when only autonomous local slave robots in Sim (2) handled 
the task, but the teleoperated robot, the team leader, acted as a supervisor to monitor other robot 
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operations. (2) Forming the subteams could save all seven robots from visiting all targets to 
complete the task because the seven robots were split into three robots in a subteam to perform 
the task on different targets simultaneously as shown in Figure 7. By taking advantage of the task 
planning independently done by each subteam, the task completion was more effective when the 
operation time was decreased to 625 seconds in Sim(2) from 1350 seconds in Sim(1) in Figures 
9 and 6, respectively, since the average speeds of the robots were equivalent during the 
simulations. 
 
Besides, in the simulations, we implemented different pairing methods in Table 5 to the scenario 
mentioned above. As shown in the table, those pairing methods were run to compute various 
subteam-target pairs in different durations of time so called the execution time. In comparison 
with the data from other findings [9,13,32,39], the convergence rates with swarm particle 
optimization (SPO), auction based, and proposed pairing methods [32,39] were faster than those 
with the market and genetic methods [9,13] by 20-30 second execution time because the 
algorithms for SPO, auction based, and the proposed pairing methods are simpler. However, the 
algorithms for the SPO and auction based methods [32,39] are rigid; hence, they are 
inappropriate for target capturing if an obstacle is not known beforehand, but in fact, most of the 
working environments in engineering applications are uncertain. Therefore, only the proposed 
pairing method in Sim (2) can present the relatively fast and stable convergence to get robot-
target pairs because of its simple algorithm. In addition, due to its flexibility, it is also applicable to 
target capturing even if no apriori knowledge about obstacles is available since no obstacle data 
is required to solve Eqs (1) – (12). 
 

4. CONCLUSION & FUTURE WORK 
The proposed control methods are developed for the SMMS mobile teleoperations to work on 
multi-targets and improve the performance in terms of the effectiveness of the task achievement 
and the system transparency as seen from the simulation results. In the simulations, the time 
required to complete the task by the slave robots was reduced from 1350 seconds in Sim (1) to 
625 seconds in Sim (2). With the proposed robot-target pairing method, the robots made 
subteams that autonomously worked on paired targets in the modified potential field leader-
follower formation, which makes the SMMS system be capable of handling multi-targets 
simultaneously in a short time. Moreover, by comparing the proposed robot-target pairing method 
to the others in [9,30,32,39], it is so simple that a relatively fast convergence rate to obtain an 
optimal solution (proper robot-target pairs) is achieved. Besides, the results also showed that the 
smaller position errors in Sim(2) than those in Sim(1) represents the transparency enhancement. 
The reason is the effect on the robotic system due to the time-varying communication delays is 
reduced because during the operation, with the proposed control methods, all slave robots except 
a team leader become completely autonomous. The team leader is the only robot teleoperated by 
the human operator in a team but not engaged in any task when the time-varying delays mostly 
happen over the long distance wireless communication between the master and slave team 
leader robots [28,27]. Therefore, it was shown that in Sim (2), task efficiency and conditional 
transparency were improved despite the fact that the system was subjected to the time-varying 
communication delay. Moreover, the slave robots with the proposed control methods can avoid 
obstacles and track and then capture targets when (1) the modified potential field based leader-
follower formation and (2) the robot-target pairing method take effect. Nonetheless, the robot-
target pairing method could only generate a suboptimal solution in general since it is based on 
some heuristic data that come from human experiences. 
 
Therefore, our future work will be to further evaluate the performance of the MRMTMT pairing 
method and the performance and quality of the robot-target pair solutions. In addition, we will look 
into the proposed control method for a SMMS system working in very complex tasks and 
environments, e.g. a task that may require identification of positions and types of the uncertain 
targets in an unknown area. We will install the proposed control methods into SMMS system 
hardware for further experimental validation based on comparative studies on the results from 
experiments and simulations to emphasize the expected good performance achievement 
although the real time delays may vary irregularly. 
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