
Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 8

Proposal and Implementation of the Connected-Component
Labeling of Binary Images and Filling Holes for GPGPU

Hiroto Kizuna v2649861@gmail.com
Graduate School of Software and Information Science
Iwate Prefectual University (Current affiliation: KDDI corporation)
Takizawa,020-0693,Japan

Hiroyuki Sato sato_h@iwate-pu.ac.jp
Graduate School of Software and Information Science
Iwate Prefectual University
Takizawa,020-0693,Japan

Abstract

The connected-component labeling (CCL) is a technique for extracting connected pixels having
the same value. It is mainly used for abnormality diagnosis of products, and for extracting noise

areas of products. In the extraction of product areas in product diagnosis, a hole filling p rocessing
(HFP) is used to complement discolored areas. However, the HFP is inefficient, because the CCL
needs to be executed twice in the foreground and background, and half of the threads are idle

during each process. In this study, we propose a rewriting method for continuous label IDs with
pixel-by-pixel parallelism, and a HFP method using simultaneous CCL of foreground and
background. We implemented and evaluated these methods on Jetson TX2. The rewriting

process to the continuous label ID is 3.7-13.8 times faster than the conventional method of
sequential processing on the CPU, and on average 9.2 times faster. For the HFP using
simultaneous CCL, we implemented and verified the conventional method that requires twice the

CCL and the proposed method that can extract the foreground and background with one CCL.
The performance of the proposed method is about 13-27% better than that of the conventional
method. In addition, in the lightweight object detection method that is an application using the

proposed method, the facial detection time is about 14 ms, which is about 60 times faster than
the conventional method. As a result, the facial detection processing with high computational
complexity can be operated practically even on an inexpensive and small processor. The CCL

process for GPGPU has little room for optimization, and it has been difficult to achieve higher
speeds. However, we focused on wasted idols in the HFP, proposed a method to reduce and
supplement them, and realized a faster HFP than the conventional method.

Keywords: Connected Component Labeling, Parallel Processing, GPGPU, Image Processing.

1. INTRODUCTION

Connected-Component Labeling (CCL) [1] is one of the most important kernels in image
processing. It is a process that extracts a group of pixels connected with the same pixel value
from the input image as a connected component. It is mainly used for diagnosis using images

such as diagnosis of defects in production lines, medical image diagnosis using CT images, pest
diagnosis of c rops and estimation of yield. An application of extracting objects or noise area in an
image is a process that fills non-object area (perforation) in the object area (hereinafter referred to

as hole filling process: HFP) [2][3][4][5]. The HFP can extract a noise-removed object region by
connecting a non-object connected component with a small area to an object connected
component. Processing methods such as histogram calculation are used to calculate the area of

non-object connected components. Therefore, using the label ID added to the extracted
connected components, the histogram bin (array) is accessed and the number of pixels is
counted. However, the label ID of the final label image is a non-consecutive number, and the

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 9

maximum number can be the number of pixels of the input image. This degrades the locality of
the access pattern to the histogram bin and causes cache efficiency to decrease. Furthermore,

resource efficiency is poor because it is necessary to secure the histogram bins for the number of
pixels of the input image in the memory.

CCL processing is computationally expensive compared with image processing kernels such as
Gaussian filters and is likely to become a bottleneck in real -time processing. Furthermore, a
general CCL algorithm is not suitable for SIMD (Single Instruction Multiple Data stream)

architecture because it does not have simple parallelism and requires a large number of complex
branch instructions. Thus performance improvement by parallelization cannot be expected. The
HFP requires longer processing time because the connected components are extracted for the

both foreground and background.

In general, when processing images on a GPU, one thread is assigned to each pixel. However,

there is no need to extract the background when foreground components are extracted, and the
foreground when background is extracted. As a result, half of the two CCL are in an idle state,
and the processing time is long and the execution performance is degraded.

In this study, we propose a parallel algorithm to rewrite the label IDs of CCL label images to
consecutive numbers starting from 1 for the above-mentioned issues. In addition, in order to

speed up the HFP, we propose a HFP algorithm using connected components that
simultaneously extract the foreground and background components. We use the propagation
CCL algorithm [6][7] which is for many-core architectures such as GPGPU proposed by Shibata

et al. The implementation environment was Tegra X2 (TX2) [8] which is a small and lightweight
embedded SoC with a GPU provided by NVIDIA. This is because it is assumed to be used in
factory production lines and in-vehicle applications. In this study, we verified the processing

speed and execution efficiency by parallelization on TX2.

Section 2 explains the technologies used, related works, and general application techniques. In

section 3, we explain two proposed methods: rewrite algorithm for continuous label ID for GPGPU
and filling process using connected components extracted simultaneously foregr ound and
background. Section 4 shows the results of verification, and section 5 concludes.

2. RELATED TECHNOLOGIES

2.1. CCL

2.1.1. Algorithms
CCL targets binary images with True (1) and False (0) values, adds one or more unique label IDs
to connected pixel groups with the same pixel value, adds label IDs of 0 to the other pixels, and

outputs a label image as shown in FIGURE 1 (d). There are two types of CCL processing
algorithms: raster type and propagation type. In this research, we will focus on the extraction of 4
connected components in the vertical and horizontal directions. Two methods are described

below.

The raster type sequentially scans from the upper left corner to the lower right of the binary image,

and if there are foreground pixels in the two neighboring pixels which are up and left of the target
pixel, the smallest label ID in them is added to the target pixel. If no foreground pixel exists, a new
label ID is added to the target pixel. If the foreground pixel has the pattern shown in FIGURE 2 (b),

different label IDs will be added even to the connected pixels, since the raster type scans from
the upper left to the lower right. So, in the raster type, the identity of label IDs is stored using
Look-Up Table (LUT), and the label is rewritten after labeling to all pixels is completed. Therefore,

the amount of calculation is relatively lower than the propagation type described below, since the
connected components can be extracted by two scans. However, there is no simple parallelism,
since it scans sequentially from the upper left to the lower right.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 10

Propagation-type CCL processing consists of initialization, neighborhood search, and label ID
update. These three processes have pixel-by-pixel parallelism and are suitable for GPUs.

foreground background
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 15 16 0 0 19 0 0

0 0 24 25 26 27 28 0 30 31 0

0 0 35 36 37 38 39 0 0 42 0

0 0 46 47 0 0 50 51 0 53 0

0 0 57 58 0 0 61 62 0 0 0

0 0 0 69 70 71 72 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 15 15 0 0 19 0 0 0 0 0 0 15 15 0 0 19 0 0

0 0 24 24 15 15 15 0 19 19 0 0 0 15 15 15 15 15 0 19 19 0

0 0 24 24 15 15 15 0 0 19 0 0 0 15 15 15 15 15 0 0 19 0

0 0 24 24 0 0 15 15 0 19 0 0 0 15 15 0 0 15 15 0 19 0

0 0 24 24 0 0 15 15 0 0 0 0 0 15 15 0 0 15 15 0 0 0

0 0 0 24 24 24 24 0 0 0 0 0 0 0 15 15 15 15 0 0 0 0

0 0

(a) 4-neighbor connectivity mask (b) Label Image L (Initialized)

p

up(p)

down(p)

left(p) right(p)

(c) Label image L (Propagating) (d) Label image L (Propageted)

FIGURE 1: Propagation Type CCL.

foreground background

0 0 0 Src Dst 0 0 0 Src Dst 0 0 0 Src Dst

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 2 0 0 1 2 0 0 1 2 1

… … 2 2 … … 2 2 1 … …

LUTLabel ImageLUT

(a)

->->

Label Image LUT Label Image

(b) (c)

FIGURE 2: Example that cannot be connected by a single scan.

In the initialization process, the array index is stored in all pixels of the label image. The array

index is calculated by y x width + x, where (x, y) is the pixel coordinate and width is the image
width. On the outer periphery of the label image, background labels IDs are stored for simplicity.

The algorithm for CCL processing is shown in Algorithm 1. PROPAGATE is propagation
processing and SEARCH_AROUND is neighborhood search. At lines 7 to 10 4 neighbors are
searched, and at lines 11 to 15 the minimum label ID is store in the label image. Up(), left(),

down(), right() at from line 7 to 10 are functions that return the relative neighborhood index of the
argument p. Each correspondence is shown in FIGURE 1 (a). Atomic on lines 13 and 14
indicates an atomic operation. The atomic operation prohibits reading and writing to the variables

of other threads until an atomic operation thread finishes the operation, when multiple threads
operate on a shared variable such as a global variable at the same time. There are functions
such as min and max in atomic operations. These functions return minimum or maximum in a

variable on a single thread. This is described on lines 13 and 14. The atomic operation result is
obtained by performing <- (assignment) within the scope of the atomic operation.

PROPAGATE is assumed to be executed in parallel, and the minimum label ID may be smaller
after the neighborhood search than when 4 neighborhoods are referenced. So, by re-referencing

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 11

the label image with the searched minimum label ID, a small label ID that is farther away can be
obtained in one scan, and the propagation speed is increased. By executing this propagation

process multiple times, each connected component pixel group is replaced with the same unique
label ID, and the connected component can be extracted. In the extracted label image, as shown
in the FIGURE 1 (d), the smallest label ID (one-dimensional array index) among all the pixels in

each connected component is propagated as a unique ID. Therefore, the maximum value of the
label ID after propagation can be the number of pixels in the input image.

After line 24 is the processing flow for generating sequential label images. Labels are propagated
by executing PROPAGATE multiple times. In order to minimize the number of executions of
PROPAGATE, global synchronization is performed every time the propagation process for all

pixels is completed.

Algorithm 1 CCL algorithm and conventional label continuation method

Rquire:

 Image array B

Ensure:

 Label image array L

1 : function SEARCH_AROUND(t, n)

2 : if n != 0 and t > n then return n else retun t end if

3 : end function

4 : procedure PROPAGATE(L , p)

5 : g <- o <- L [p]

6 : if o != 0 then

7 : g <- SEARCH_AROUND(g, L [up (p)])
8 : g <- SEARCH_AROUND(g, L [left (p)])
9 : g <- SEARCH_AROUND(g, L [down (p)])

10 : g <- SEARCH_AROUND(g, L [right (p)])
11 : g <- L [L [L [L [g]]]]

12 : if g != 0 then

13 : atomic (L [o] <- min (L [o], g))
14 : atomic (L [p] <- min (L [p], g))

15 : end if

16 : end if

17 : end procedure

18 : procedure UPDATE_LUT(L p , lastId)

19 : if L [p] != 0 and T [Lp] = 0 then

20 : lastId <- lastId + 1
21 : T [Lp] <- lastId

22 : end if

23 : end procedure

24 : for p <- 1, IMAGE_SIZE do in parallel

25 : if B [p] = 0 then L [p] <= 0 else L [p] <- p end if

26 : end for

27 : for count <- 1, IMAX_NUM_LOOPS do

28 : for p <- 1, IMAGE_SIZE do in parallel

29 : PROPAGATE(L, p)

30 : end for

31 : end for

32 : lastId <- 0

33 : for p <- 1, IMAGE_SIZE do

34 : UPDATE_LUT(L [p], lastId)

35 : end for

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 12

2.1.2. Related Works on CCL
The CCL algorithm has been researched for a long time [1]. Several methods for ensuring

parallelism have been proposed for the problems of raster algorithms that lack simple parallelism.

Raster Type

Suzuki et al. proposed a four-time scanning-type CCL algorithm whose processing time was
linearly proportional to the image size without depending on the geometric shape, by performing
forward search from the upper left and backward search from the lower right [9]. Double-scan

CCL algorithm proposed by Wu et al. records the link information between multiple provisional
labels pasted during a first scan, and changes the global label link relationship by Union-find [10].
The process is completed by writing back the label using the connection relation information

during the last second scan. The two-scan CCL proposed by He et al. reduces the memory
access by evaluating the identity of the label for each connected component unit for each raster,
instead of evaluating for each pixel at the time of scanning [11].

Propagation Type
[12] proposes a parallel algorithm of CCL, and achieves a speed increase of about 20 times on a

24-core CPU. [13] proposes two algorithms for GPGPU. One is a technique that applies reduction
processing. The other is a combination of a general label connectivity evaluation method and a
neighborhood search method. In [6], the speed is improved by dividing the input image and

transferring to a high-speed on-chip memory, and then propagating labels on it. In [7][14] [15], the
propagation speed of the label ID is improved by searching the minimum label ID again using the
label ID searched after the peripheral pixel search cons idering the characteristics of

asynchronous processing.

2.1.3. Application of CCL

CCL is mainly used for object detection and diagnosis using binary images generated from two-
dimensional features. Application examples are product defect diagnosis on production l ines, pest
diagnosis of crops, yield estimation, medical image diagnosis using optical images and CT

images, and object detection.

[16] aims to improve production efficiency by detecting defective products by st rain inspection

early in the manufacturing process of rearview mirrors. The inspection proposed here is realized
by irradiating a glass surface with an equally -spaced circular pattern, capturing the image,
extracting each circular pattern from the captured image, and using the distance relationship

between the circular patterns. CCL process is used when this circular pattern is detected. [17]
has realized automation of surface inspection of rolled steel products. The research on
automation of this surface inspection has been devised for a long time, and it was initially used for

rough inspection by laser, and now, research is being made toward the realization of relatively
high precision inspection using CCD. In this document, the hue and the reflection of light are
specified from the image of the product surface, the defective area is specified from the color

difference and the luminance, and the area is extracted by CLL.

[3] proposes an inspection system that automatically extracts concrete cracks from captured road

surface images. Reflection of outside light is extremely limited, since the cracked area becomes a
groove. Using this phenomenon, the image is binarized using the characteristic luminance and
color difference that appears when the image is taken, and the crack region is detected by CCL.

[18] has proposed a lesion diagnosis system using optical images for the purpose of disease
diagnosis of crops. Diseases of agricultural crops have characteristic patterns and color
differences in the leaves, so disease diagnosis is performed by extracting those features. In

addition, the severity of the disease is quantitatively measured by investigating the ratio of the
lesion area to the entire leaf area. Information on leaf area or lesion area extracted by CCL is
used for both disease diagnosis and severity calculation.

Medical diagnosis using medical images has been actively studied for a long time. In [19], the
abnormality diagnosis of red blood cells is automated, and the image captured by the microscope

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 13

is used to binarize the color features and the platelets are extracted by CCL. [2] automates the
detection of platelets and the detection of malaria parasites in the blood by image processing. In

[20][21][22][23][24][25], by extracting organs, blood vessels, cancer, and tumor areas using single
or multiple slices, The 3D CG reconstruction of organ images, the extraction of lesion areas due
to disease, and disease estimation diagnosis are realized. In both cases, connected components

are extracted from CT images to extract organs, blood vessels, and lesion areas, and features
such as shape and hue are used for each connected component.

In object detection, [4][26][27][28][29][30] proposes face detection using color features, and
[28][31][32] estimates the gaze area and face area by analyzing the positional relationship nd
movement of the eyeball from the captured image. In object detection, feature image is generated,

and CCL is used to extract a face region block. In [33], in order to suppress the disturbance
caused by glasses in face recognition, the glasses area is automatically extracted and removed
from the face image. In object detection, the feature image is generated in all cases and CCL is

used to extract the face area blocks.

[7][13] has developed and verified a new AR marker that can be recognized at high speed while

maintaining the recognition accuracy of the existing AR marker or higher. CCL is used to extract
the proposed marker pattern from the image, and it is accelerated by GPGPU. [34][35][36]
attempted to recognize characters and graphs from scanned sentences or cartoon images.

Connected components are extracted from the binary image generated by colors and image
filters, and characters and graphs are extracted as one component by using the area of each
component and the correlation with the neighboring components of the component.

2.1.4. Summary and Issues of CCL
As explained in section 2.1.3, CCL is used in various fields of applications. CCL is used to

calculate the area of each component and the distance and number of components. However, the
label ID of the final label image is discontinuous as in FIGURE 1 (d), and the maximum value of
ID can be the total number of pixels in the input image. In the implementation that counts the area

by array using the label ID of each component as a key, memory access is discontinuous, it is not
suitable for CPU speed-up mechanism, and resource utilization efficiency is poor. Furthermore,
threshold processing using the calculated area is performed in units of labels, but processing for

all pixels is required since all label IDs must be processed. In CCL, it is extremely important to
perform the above-mentioned label re-sticking process at high speed. This is because it is used in
applications that require extremely high real-time properties such as product inspection, medical

diagnosis using images, and object recognition of faces and markers.

Machine learning methods such as SVM, which was developed in the 2000s, and deep learning,

which has been attracting a lot of attention since the 2010s, have extremely high accuracy.
However, it requires a learning phase over several tens of hours by creating learning datasets
with abundant volumes and using high-performance computing resources. In addition, relatively

high computational resources are often required in also the detection and recognition phases of
actual operations. Therefore, it cannot always be stated that these machine learning methods are
suitable for high-speed inspection systems using embedded devices. Considering the trade-off

between the inspection speed and the processing speed, there is a high need for inspection
systems based on manual feature extraction and region extraction.

2.2. HPF using Background Connected Components
Here, the HFP is explained using the FIGURE 3 for the diagnosis of leaf disease by image
processing. (a) is an input image, and (b) is a binary image obtained by thresholding (a) based on

leaf color information. The HFP is used to complement the leaf area that could not be extracted
from the input image by threshold processing. The threshold is experimentally set using the
normal green feature of the leaf, but there is a disease region in the leaf of (a), and the color is

changing. Therefore, the lesion area cannot be extracted as a leaf area as shown in (b). As
shown in (b), the lesion area inside the leaf area is determined as background areas such as
holes. Therefore, the leaf area is complemented by using a HFP that makes the background area

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 14

foreground. The result is (c). The procedure of this HFP is realized by extracting the connected
components of the background region, generating the area histogram of the background

components, and then foregrounding the small background components.

Foreground Background

(a) Input image (c) Filled holes

→ →

(b) Binarized Image

FIGURE 3: HFP on Binary Image.

2.2.1. Application of HFP

One of the practical uses of extracting objects and noise areas in an image is processing to fill
non-object areas (holes) existing in the object area [2][4][5][18]. In [2], when binarization using
color information is performed to extract the blood cell system existing in the blood, red blood

cells are often imaged in a donut shape, and the central part is missing and extracted. Therefore,
the HFP is used to extract the central part of the donut shape as the same object. [4] is a simple
face detection process based on an image containing a face area photographed under limited

conditions. The HFP is applied to complement the face area that could not be extracted by the
hue information. [5] is a study of the theory of bubbles rising in a liquid. Observing and
reconstructing the actual behavior in the natural world is extremely important in clarifying the

principle. Using an experimental device that generates bubbles in the liquid, the behavior of the
bubbles is photographed and they understand the behavior by tracking the position. The purpose
of this research is to automate the behavior analysis. They have proposed a method that extracts

the outline of bubbles from a photographed image and extracts the entire bubble as a single
object by HFP. After that, they analyses by matching using a bubble shape model. [18] diagnoses
disease using leaf images as described in section 2.2. The HFP is used to integrate the missing

area into the leaf area since the lesion area of the leaf is discolored.

By connecting non-object connected components with a small area to the object connected

components by the HFP, it is possible to extract the object region from which noise has been
removed. Processing methods such as histogram calculation are used to calculate the area of
non-object connected components.

2.3. GPGPU
In recent years, the GPU, which is a processor on a graphic board, has grown significantly, and

now it has reached the theoretical performance more than 10 times the CPU. The GPU is a
processor optimized for graphics applications such as 3D modeling and computer graphics, but
general-purpose scientific and technical computations can be processed at high speed if the

algorithm is suitable for this GPU architecture. For this reason, research and development of
computation methods suitable for this GPU has been actively pursued in recent years and is
called GPGPU (General Purpose Graphics Processing Units). Among these, application results

have been reported in various fields such as image processing, weather forecasting, and
encryption processing. However, in order to maximize the original performance of the processor
in application execution, there is a problem that it is necessary to understand the GPU structure

and apply an execution control method suitable for it.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 15

2.3.1. Mobile GPGPU Environment
The performance of so-called SoC (System-on-a-Chip) which is a processor for mobile terminals

such as smartphones and tablet PCs, has made remarkable progress. In March 2017, NVIDIA
announced Tegra X2, an SoC that integrates a CPU and GPU [8]. Although the TX2 is a very
small board of 50x87mm square and business card size as shown in FIGURE 4, it is equipped

with 256 CUDA cores used in also desktop systems and supports general -purpose computing
technology. NVIDIA Jetson TX2 development kit equipped with Tegra X2 was released. This is a
small board size of 13 inches square and a low price of $599. This TX2 meets the constraints

such as size, weight and power consumption when loading on a drone and is very suitable for our
system.

FIGURE 4: NVIDIA Tegra X2 Board.

3. PROPOSED METHOD
In this section, we propose a rewriting algorithm for continuous label ID for GPGPU, a hole-filling
algorithm using connected components extracted simultaneously foreground and background,
and a reduction and speedup of the calculation.

3.1. Label Rewriting Algorithm
In the application implementation of this research, the area of the connected component is

calculated. This process is so-called histogram calculation. In a processing system that does not
have a dictionary data structure, it is calculated by incrementing the array eleme nt for recording
using the label ID as a key. However, after CCL, the label ID is not continuous from 1 as in the

FIGURE 1 (d). So, Cache hit rate is significantly reduced since the array is accessed using the
non-continuous label ID as a key. In addition, there are many unused memory areas and the
memory utilization efficiency is low. Furthermore, when this processing is executed in parallel on

the GPU, a memory area that is the number of parallel executions multipl ied by the number of
pixels is required, which is unrealistic.

One solution to this problem is to rewrite non-contiguous label IDs to continuous label IDs starting
from 1. The rewriting process is shown on lines 18 to 23 of Algorithm 1. T is a LUT for recording
the correspondence between non-continuous labels and continuous labels for each component. T
is a one-dimensional array with elements for the number of pixels, the indices are non -continuous

labels, and the element values are continuous label IDs. The variable lastId holds the label ID that
was last acquired. By incrementing this variable, a new continuous ID can be acquired and T can
be updated. Since the variable lastid cannot be incremented simultaneously, the rewriting

process cannot be simply parallelized. Therefore, when updating T on a GPU, almost all cores
become idle, processing time is long, execution efficiency is extremely low, and it is not suitable
for GPGPU. So, we propose a rewriting algorithm based on IF statement control for continuo us

labels with pixel -by-pixel parallelism.

The algorithm is shown in lines 16 to 22 of Algorithm 2. The ID of the label image extracted from

connected components used in this study is the array index. Also, since each thread is

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 16

responsible for processing one pixel, the thread always has a unique ID, which is the same
coordinate system as the array index of the label image. Each component of the final label image

extracted from the connected component has a minimum array index written as a label ID, and a
thread having a thread ID that matches the minimum label ID is uniquely determined. So, the
thread whose thread ID and label ID match becomes the representative thread for that

component. After that, the representative thread acquires a unique continuous label ID, records
the relationship between the non-continuous label ID and the continuous ID in the LUT, and uses
the LUT to rewrite the label image with the continuous label ID.

Algorithm 2 Simultaneous foreground and background CCL method and label

continuation method

Rquire:

 Image array B

Ensure:
 Label image array L look-up table array T , label to array index look-up table

LabelToIdx , last label ID LastId
1 : function SEARCH_AROUND2(bt , t , bn , n)

2 : if bt xor bn != 0 and t > n then return n else retun t end if

3 : end function

4 : procedure PROPAGATE2(B , L , p)

5 : g <- o <- L [p]
6 : g <- SEARCH_AROUND2(B [p], g, B [up (p], L [up (p)])
7 : g <- SEARCH_AROUND2(B [p], g, B [left (p], L [left (p)])
8 : g <- SEARCH_AROUND2(B [p], g, B [down (p], L [down (p)])
9 : g <- SEARCH_AROUND2(B [p], g, B [right (p], L [right (p)])

10 : g <- L [L [L [L [g]]]]

11 : if g != 0 then

12 : atomic (L [o] <- min (L [o], g))
13 : atomic (L [p] <- min (L [p], g))

14 : end if

15 : end procedure

16 : procedure UPDATE_LUT_BY_SAME_PIXELVALUE(L , T , LabelToIdx , p ,

17 : if T [L [p]] = p then

18 : atomic (u <- ++lastId)
19 : T [L[p]] <- max (T [L [p]], u)
20 LabelToIdx [L [p]] <- u

21 : end if

22 : end procedure

23 : for p <- 1, IMAGE_SIZE do in parallel

24 : L [p] <- p
25 T [p] <- 0

26 : end for

27 : for count <- 1, IMAX_NUM_LOOPS do

28 : for p <- 1, IMAGE_SIZE do in parallel

29 : PROPAGATE2(B , L, p)

30 : end for

31 : end for

32 : lastId <- 0

33 : for p <- 1, IMAGE_SIZE do in parallel

34 : UPDATE_LUT_BY_SAME_PIXELVALUE(L , T , p , lastId)

35 : end for

3.2. Foreground and Background Simultaneous CCL

The outline is the same as the algorithm described in the section 2.1. Only the parts that differ
greatly are extracted and explained using Algorithm 2.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 17

In the initialization process, the connected components are extracted at the same time for the
foreground and background, so a one-dimensional array index is stored for all pixels except for

1px around the label image. There are two main differences between the foreground and
background simultaneous propagation processing and the fore ground or background only
propagation processing. In the vicinity search of Algorithm 1, if the target pixel is the background,

the connection judgment of the surrounding pixels is not performed. The first difference is that the
foreground and background are extracted simultaneously in this process, so the connection
judgment is performed regardless of the target pixel value. The second difference is that this

process judges whether the values of the binary image corresponding to the target pixel and the
surrounding pixels are the same. For this judgment, XOR is used for speeding up, and the
property that it always becomes 0 when the input values are the same is used.

Finally, the process of rewriting to continuous label ID is shown on lines 16 to 26. The LUT is
checked for all pixels, since both the foreground and background are rewritten simultaneously. If

the label of the LUT is the initial value, the representative thread of each component acquires the
new label ID and stores it.

As described in section 3.1, label IDs of the label image are rewritten to the serial number.
However, even if the label image is rewritten to the serial number label at the end of this CCL
process, it is necessary to rewrite the serial number label ID again in order to integrate the

foreground components by the HFP. So, it is a slow and useless calculation. Therefore, in the
fore-background simultaneous CCL used for the HFP, only generation of the LUT that records the
relationship between the non-continuous label ID and the continuous ID is performed, and the

label is rewritten after the HFP. The continuous label ID is rewritten to a unique ID of the same
set regardless of the foreground / background, since the foreground / background can be judged
from binary images.

3.3. HFP using Foreground and Background Simultaneous CCL
In this section, we propose a HFP using connected components that have been extracted

simultaneously the foreground and background proposed in section 3.2. We explain using a
FIGURE 5 which shows briefly the relationship between the foreground and background labels.
(a) is a label image that records the connected components extracted simultaneously with the

foreground and background at the section 3.2, and this is the initial value for the filling process.
The index prefixed with L in the figure is the label ID of each component, and the magnit ude
relationship of the index part matches the nature of the original label ID. In this HFP, the

connected components of the foreground and background have already been extracted. The
components to be filled are background components, but its neighboring components are always
foreground components, so the foreground component label IDs are integrated after

foregrounding the background components.

Step1. Area calculation of Foreground and Background Components and Extraction of

Small Components
A histogram of the number of pixels for each foreground / background component is generated.
Unlike the section 2.2, a histogram for both foreground and background components is generated.

This is because, at the end of the section 3.2, a new continuous label ID is generated for the
foreground and background, and it corresponds to it. Label IDs of the label image are rewritten
with the continuous label IDs of this LUT, and a histogram is generated with the continuous label

IDs. It is possible to generate a histogram only for the background, but in this case, background
label judgment is required using a conditional expression after referring to the binary image.
Conditional expressions can cause stalls in multistage pipelines of computing units, and SIMD

operations that perform the same processing on multiple data cannot be applied, which can
cause speed performance degradation. Therefore, a histogram is generated for both the
foreground and background.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 18

Next, if each component area is less than or equal to the threshold value, True is stored in the
integration flag of the component. In (b), "Filling" are written as background components t o fill the

hole, and these are {L3, L5}.

foreground background format: current label ID

(previous label ID)

(c) Propagating labels (d) Propagated labels

(a) Initialized (b) Foregroundization

(F1)
(B3)

(F2)

(F3)

(B2)

L1

L2
L3: Filling

L4

L6

L5: Filling

L1

L2
L3

L4

L6

L5

L2
L2(L3)

L2(L4)

L2(L6)

L4(L5)

L1

L2
L2

L2

L2

L2

L1

FIGURE 5: Foregroundization of Small Background Components.

Step2. Foregroundization of Small Background Components

Next, the binary image that records the foreground / background information of each pixel is
rewritten. The integrated judgment result of each label and the binary image are of the same type,
and the integrated judgment result of each label is added to the binary image as a foreground

pixel by bit operation.

Step3. Integrated Search for Foreground and Background Labels

In Step 2, the L3 and L5 labels in (b) have become foreground from the background, so the labels
L2-L6 all become the same connected component. However, each component has a different
label ID, and it is necessary to integrate different label IDs of these same components into the

same label ID. Here, we propose a method for integrating different label IDs of the same
component. The algorithm is shown in Algorithm 3. It is designed to produce correct results even
if executed in parallel. MERGING_FOREGROUND searches for foreground components for 4

neighborhoods, and SMF is the search algorithm. If the component is foreground and the
neighborhood label ID is smaller than the label ID, the neighborhood label ID is used as the label
ID. LUT is used to refer to and rewrite label IDs. In this algorithm, only foreground label IDs are

propagated, and background components become the initial value 0 (background label ID) of the
LUT. (c) shows the propagation process, and (d) shows the integrated LUT that completed the
propagation. In (c), the components that propagated the label IDs describe the label IDs before

and after propagation.

Step4. Generation of New Continuous Label ID Correspondence Information

Since label IDs propagated in Step 3 are array indexes, these are non-consecutive numbers.
Therefore, a LUT for rewriting the foreground label IDs after integration into continuous label IDs
is generated. This algorithm is shown on lines 15-24. T records the relationship between label IDs

at the time of CCL and the minimum foreground label IDs integrated by foreground, and T’
records the correspondence between the integrated label IDs and the new continuous label IDs.
Note that unlike the acquisition of continuous label IDs in the section 3.1, it is sufficient in this

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 19

process to perform label update checks for the total number of labels in foreground / background
CCL.

Algorithm 3 HFP using Foreground and Background Simultaneous

Rquire:
 Image array B, look-up table array T , label to arrayindex look-up

table LabelToIdx , last label ID lastId
Ensure:

 Label image array L

1 : function SMF(T , t , bn , n)

2 : if bn = 1 and T[t] > T [n] then return n else retun t end if

3 : end function

4 : procedure MERGING_FOREGROUND(B , L , T , p)

5 : if B [p] = 1 then

6 : g <- L [p]
7 : g <- SMF(T , g , B [up (p)], L [up (p)])
8 : g <- SMF(T , g , B [left(p)], L [left (p)])
9 : g -> L[L[g]]

10 : if T [L [p]] != g then

11 : atomic (T [L [p]] <- min (T [L [p]], T [g]))

12 : end if

13 : end if

14 : end procedure

15 : procedure UPDATE_LUT_FOR FILLING HOLES(T , T' , l , lastId)

16 : if T' [T [l]] = 0 then

17 : atomic (v <- --T' [T [l]])
18 : syncthreads()

19 if v = -1 then

20 atomic (lastId <- i +1)
21 T' [T [l]] <- lastId

22 end if

23 : end if

24 : end procedure

25 : for count <- 1, IMAX_NUM_LOOPS do

26 : for l <- 1, lastId do in parallel

27 : MERING_FOREGROUND(B , L, T , labelToIdx [l])

28 : end for

29 : end for

30 : lastId' <- 0

31 : for p <- 1, IMAGE_SIZE do in parallel

32 : UPDATE_LUT_FOR_FILLING_HOLES(T , T' , l , lastId')

33 : end for

3.4. Optimization HFP using Foreground and Background Simultaneous CCL
In the section 3.3, the HFP for GPGPU is explained. In the HFP, background components that

became the foreground are always connected to the surrounding foreground components. As a
result, multiple foreground components may be connected to surrounding foreground
components. The computational order of this search process can be reduced from the total

number of input image pixels to the number of foreground and background labels. This reduction
method is explained in this section.

As explained in the section 3.3, foreground component integration is achieved by searching for
connectivity to the neighborhood of all pixels in the image and propagating a smaller foreground

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 20

label ID. As propagating label IDs, discontinuous label IDs used when extracting connected
components are used. These label IDs are array indexes, and the label ID of each component is

the smallest array index of each component, that is, the array index existing at the upper left of
the same component. It is guaranteed that the label IDs of components that exist above or to the
left of a component are always smaller than the label ID of that component, and conversely, the

label IDs of components that exist below or to the right are greater than the label ID of that
component.

All the pixels were searched for the connectivity check of the component. As mentioned above,
the label ID of a certain component is the smallest pixel index existing at the upper left of the
component. In other words, by referring to the label image by each label ID (pixel index) and

searching the pixels above and to the left of the pixels, the connectivity of all the components can
always be checked. As a result, in the connectivity check process, all the pixels have been
searched so far, but it is sufficient to search all the number of labels Ln times in the sequential

processing. When executed in parallel on the GPU, it is possible to link all the labels with a
shallow component nesting by searching all the labels about twice, but for an image with a deep
component nesting, it is necessary to search all the labels about 8 times or more. The foreground

component integration algorithm using these properties is shown on lines 25 to 29 of Algorithm 3.

4. EXPERIMENTAL RESULTS
In this section, we veri fy and evaluate the speedup rate and computational efficiency of the HFP
by the background and background simultaneous CCL using the conventional method and the
proposed method. To verify GPGPU implementation, NVIDIA's Jetson TX2 was used, so it was

implemented with CUDA (Compute Unified Device Architecture), a development environment
provided by the company.

4.1. Experimental Environment
As the execution environment, we used the above-mentioned CPU and GPU on TX2. TABLE 1
shows the experimental environment.

TABLE 1: This is Table 1. All tables must be aligned Centered.

TABLE 1: Experiment Environment.

TABLE 2: Raster type and propagation type processing time (microsecond) and its ratio in CPU.

The two CCL methods described in the section 2.1 are implemented for the CPU, and the result
is shown in TABLE 2. Propagation-type CCL was about 1.1-6.5 times slower than the raster type.
For this reason, on the CPU, raster-type CCL was adopted for HFP.

Spec Jetson TX2
CPU Cortex-A57@2GHx 4 Cores

GFLOPS 16.0

GPU Pascal@1.3GHz 256 Cores
GFLOPS 665.6

OS Ubuntu 16.04 LST

Image Size
Laster Type Propagation Type Rtio

Leaf Circle Rect. Leaf Circle Rect. Leaf Circle Rect.

480 x 270 1,506 1,588 1,539 1,752 2,326 1,692 1.16 1.47 1.10

960 x 540 3,754 4,833 2,740 6,735 8,176 6,291 1.79 1.69 2.30

1,920 x 1,080 10,732 11,874 6,379 25,984 32,587 24,506 2.42 2.74 3.84

3,840 x 2,160 36,425 44,542 21,243 104,108 129,558 97.225 2.86 2.91 4.58

7,680 x 4,320 134,786 200,298 75,975 401,985 540.460 492.963 2.98 2.70 6.49

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 21

4.2. Propagation of Foreground Component Labels and its Verification
In our proposed method, the HFP is realized by integrating the foreground components. This

integration process is performed by propagating the minimum label ID in the connected
component as described in the section 3.3. However, in the image with nested foreground and
background components such as FIGURE 6, when the outer-most or inter-most component ID is

the smallest, it is need to propagate N-1 times to integrate all connected foreground components,
where N is the number of nested foreground components. In sequential execution, it will be a
raster scan from the upper left to the lower right of the image, so propagation is always completed

with one scan. In the worst case for propagation, i f all pixels are processed in parallel, all pixel
values are acquired and the neighborhood search and minimum label ID are stored
simultaneously. So, the label ID that can be propagated in one scan is one neighborhood. For this

reason, it is necessary to scan all pixels N-1 times to complete the propagation process. However,
by limiting the number of execution threads during this operation, the timing of scanning each
pixel is shifted, and there is a high possibility that a small label ID will propagate more quickly. In

this experiment, the number of scanning processes described above was set to 1.

FIGURE 6: Nested Images.

In this experiment, 5 types of leaf images and 2 types of artificial images were prepared and
converted to 5 image sizes, respectively and we used them. The HFP was performed 1,000 times

for this data set. It was confirmed that all connected foreground components of the label image
generated at each execution were successfully connected.

4.3. Speedup of Rewriting Non-sequential Label IDs to Sequential Numbers
We verified a parallel algorithm for rewriting non-continuous label IDs into continuous IDs
described in the section 3.1. The conventional sequential processing was implemented and

executed on one core of the GPU and CPU. However, the GPU is about 100 times slower than
other methods, so the evaluation of the results is omitted. Each processing time and the
acceleration rate are shown in TABLE 3. And, the graph that visualized the acceleration rate is

shown in FIGURE 7.

TABLE 3: Processing time (microseconds) and acceleration rate of the label rewriting.

Compared with the conventional method, the proposed method using equivalence judgment is
about 3.7-13.8 times faster, and on average about 9.2 times faster. For the proposed method,
execution time and image size are linearly proportional. In the conventional method, as shown in

FIGURE 7, there is a difference in processing time when the image size is 960x540 or less and
otherwise. This is probably because the memory usage of the label image is small, about 500 KB,
and the cache hit rate is high.

Image Size
Proposed on GPU Conventional on CPU Conv. / Prop.

Leaf Circle Rect. Leaf Circle Rect. Leaf Circle Rect.

480 x 270 170 172 172 650 640 664 3.83 3.72 3.87

960 x 540 552 585 585 2,231 2,190 2,215 4.04 3.74 3.78

1,920 x 1,080 1,959 2,100 2,105 27,047 27,162 27,317 13.81 12.94 12.97

3,840 x 2,160 7,806 8,582 8,484 105,210 106,228 106,468 13.48 12.38 12.55

7,680 x 4,320 31,527 35,471 34,304 417,027 421,328 417,174 13.23 11.88 12.16

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 22

1

3

5

7

9

11

13

15

480x270 960x540 1920x10803840x21607680x4320

Conventional CPU /Proposal GPU

Leaf Avg Circle Rect

FIGURE 7: Acceleration rate and processing time increase rate in label rewriting process.

4.4. Speedup of Histogram Generation due to Label Rewriting

Here, we evaluate the speedup of histogram generation due to label rewriting. By rewriting to a
continuous label, the cache hit rate is improved, but it is verified whether the processing time is
shortened including the rewriting time. TABLE 4 shows histogram generation time, label rewriting

time and speed up rate on TX2 and NVIDIA GeforceGTX970M for the deskside PC. In the table,
“Hist.” is the histogram generation time, and “Total” is the time including label rewriting. “Conv. ” is
a conventional method that does not rewrite labels, and only the time for the histogram

generation is “Total”.

TABLE 4: Histogram generation time (microseconds) and speedup rate due to label rewriting.

The histogram generation is explained. In the conventional method, the size of t he histogram bin
corresponds to the resolution of the input image. For this reason, a high -speed histogram
generation method using shared memory cannot be used unless the image size is small. Instead,

the histogram is generated by atomic operation to the histogram bin stored in the global memory.
On the other hand, in the proposed method, the size of the histogram bin is reduced to the

T
y

p
e

Image

Size

on TX2 on Deskside PC (GTX970M)

Proposed Conv. Speedup Proposed Conv. Speedup

Hist. Total Hist. Hist. Total Hist. Total Hist. Hist. Total

L
e

a
f

A
v

g
.

480 x 270 305 474 330 1.08 0.70 152 192 187 1.23 0.98

960 x 540 734 1,292 804 1.10 0.62 368 480 586 1.59 1.22

1,920 x 1,080 2,375 4,367 2,595 1.09 0.59 960 1,351 2,093 2.18 1.55

3,840 x 2,160 9.077 17,112 12,458 1.37 0.73 3,060 4,467 6,804 2.22 1.52

7,680 x 4,320 36,044 68,628 42,203 1.17 0.62 11,980 17,553 27,435 2.29 1.56

C
ir

c
le

480 x 270 296 468 333 1.12 0.71 149 190 196 1.32 1.04

960 x 540 691 1,276 772 1.12 0.61 355 472 638 1.80 1.35

1,920 x 1,080 2,161 4,261 2,657 1.23 0.62 898 1,308 2,037 2.27 1.56

3,840 x 2,160 8,145 16,727 12,410 1.52 0.74 2,781 4,322 7,355 2.65 1.70

7,680 x 4,320 32,071 67,543 40,898 1.28 0.61 10,767 17,106 28,893 2.68 1.69

R
e

c
ta

n
g

le

480 x 270 301 472 320 1.07 0.68 149 189 197 1.32 1.04

960 x 540 707 1,292 872 1.23 0.68 359 474 636 1.77 1.34

1,920 x 1,080 2,222 4,328 3,000 1.35 0.69 915 1,322 2,009 2.29 1.59

3,840 x 2,160 8,362 16,845 11,550 1.38 0.69 2,855 4,326 7,306 2.56 1.69

7,680 x 4,320 32,895 67,198 46,927 1.42 0.70 11,021 17,009 29,345 2.66 1.73

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 23

number of connected components by rewriting the label to continuous IDs, so that a high-speed
shared memory can be used.

In the execution results on TX2, the proposed method is slower. On the other hand, the proposed
method is faster on the GeforceGTX970M. The histogram generation time ratio of the

conventional / proposed method on TX2 is about 1.1-1.5 times, while that on the GTX970M is
1.2-2.7 times. This difference can be attributed to an increase in the number of locks in atomic
operations due to an increase in the number of concurrently executing threads. TX2 has 256

CUDA cores, while GTX970M has 1,280 cores. On the GTX970M with a large number of cores,
effect of using high-speed shared memory for histogram generation in the proposed method is
large. As a result, the increase in the number of cores increases the access probability to the

same element, and it is thought that the operation delay is caused by the lock of the atomic
operation.

4.5. Whole Execution Time of HFP
TABLE 5 shows processing time and speedup rate of HFP. The number of pixels in each image
is four times larger, and it can be seen that the processing time is roughly proportional to the

number of pixels. The speedup rate of the proposed method compared with the conventional
method of GPU execution is 1.19-1.27 times for leaf images, which are practical data sets. For
artificial images, it is 1.14-1.22 times for Circle and 1.02-1.04 times for Rectangle. In Rectangle,

the proposed method is slower, but the performance of the proposed method is higher in other
images. The speedup rate of the proposed method compared with the conventional method of
CPU execution is 1.40-2.46 times for leaf images, 1.22-2.16 times for Circle and 1.12-1.97 times

for Rectangle. Again, some of the proposed methods are slower in Rectangle, but the
performance of the proposed method is higher in other images.

TABLE 5: Processing time (microseconds) and speedup rate of HFP.

TABLE 6 shows the processing time of each kernel in each image of the proposed method and
the conventional method. Only the results for images with a resolution equivalent to Full HD

(1,920 x 1,080) are shown in this table, but it has been confirmed that the trend of processing
time variation described below is the same for all resolution images. The leaf images are
extracted by two different features. “Number of Pixels” indicates the number of pixels in the

background connected component (Back-ground) and foreground connected component (Fore-
ground) of each image. “FB-CCL”, “HFP” corresponds to foreground and background

T
y

p
e

Image

Size

Proposed Conventional Speedup

on on vs.

GPU GPU CPU GPU CPU

L
e

a
f

A
v

g
.

480 x 270 1,521 1,808 3,741 1.19 2.46

960 x 540 5,039 6,807 10,242 1.13 2.03

1,920 x 1,080 18,604 23,507 30,336 1.26 1.63

3,840 x 2,160 72,423 88,363 104,895 1.22 1.45

7,680 x 4,320 280,091 355,982 392,934 1.27 1.40

C
ir

c
le

480 x 270 1,603 1,849 3,461 1.15 2.16

960 x 540 5,661 6,879 11,023 1.22 1.95

1,920 x 1,080 20,261 23,815 26,858 1.18 1.22

3,840 x 2,160 81,352 92,764 99,272 1.14 1.22

7,680 x 4,320 328,415 375,714 412,114 1.14 1.26

R
e

c
ta

n
g

le

480 x 270 1,994 2,031 3,933 1.02 1.97

960 x 540 7,791 7,923 8,730 1.02 1.12

1,920 x 1,080 27,728 28,702 23,968 1.04 0.86

3,840 x 2,160 126,694 116,933 85,397 0.92 0.67

7,680 x 4,320 547,248 467,065 327,606 0.85 0.60

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 24

simultaneous connected component labeling and hole filling process, respectively. “B-CCL”,
“HFP”, “F-CCL” corresponds to background connected component labeling, hole filling process,

and foreground connected component labeling, respectively.

TABLE 6: Each kernel processing time (microseconds).

There is a processing time difference of about 10-20% between leaf images and arti ficial images.
In the case of the conventional method, the difference is due to the connected component

labeling time. Binary images, which are the input of "B-CCL" and "F-CCL" for leaf images, have a
large foreground component area, so the connected component extraction time was increased. In
the case of the artificial image Rectangle, the connected component labeling time also increased

as in the case of the leaf image because the area of the foreground component of the input binary
image of "F-CCL" was large.

The ratio of the HFP time of the proposed method to the total processing time is much larger than
that of the conventional method, and the execution time is about 1.7 to 3.0 times that of the
conventional method. This is due to the foreground integration process which has a large amount

of computation in the proposed method.

The conventional method used for comparison in Sections 4.3, 4.4 is the method used in many of

the various systems shown in Section 2.1.3. Similarly, the conventional method used in Section
4.5 is the method used in many of the various systems shown in Section 2.2.1. Therefore, the
results in Sections 4.3, 4.4, and 4.5 show that the proposed method is superior to other systems.

4.6. Applying to Object Detection
We evaluate the application of our proposed HFP method using simultaneous CCL of foreground

and background. The application is a lightweight object (face) detection using CCL.

Object detection is a method to estimate the coordinates and area of the target object from the

input image. This technique is often used as preprocessing for object recognition, and can
improve recognition accuracy by limiting the image which is input to the classifier to the object
region to be recognized. As a general and specific example of object detection, we explain using

facial detection. There are four processing procedures: a) preprocessing of the input image, b)
feature extraction, c) entire region search using the coincidence degree, and d) object region
estimation. B) has a significant effect on the facial detection accuracy. A) includes noise reduction

of images and correction of camera lens characteristics. C) searches the entire area for face
position, using the likelihood of a face-like or human-skin-like in each pixel or region defined in b).
Therefore, this process is computationally expensive and takes a huge amount of time.

4.6.1. General Object Detection Method
This section describes the commonly used HOG features and SVM -based object detection. HOG

(Histogram of Oriented Gradients) [37] calculates a histogram of the luminance gradient and uses
the histogram as a feature value. It is often used as a feature of objects with distinctive edges
such as cars, human bodies, and faces. In object detection using HOG, a detection area called

ROI (Region of Interesting) is defined, and the degree of coincidence with the detection target
object is measured using images in the ROI area. Using this, it evaluates and estimates which
position of the input image is close to the feature of the object to be detected for each ROI. The

parameters that define the ROI are often defined by the position (x, y) in the image, the ROI size

Image

Number of Pixels Processing Time

Back-
ground

Fore-
ground

Proposed Conventional
FB-CCL HFP B-CCL HFP F-CCL

Leaf A 662,419 1,411,181 14,401 4,454 9,388 2,393 12,114
Leaf B 1,113,069 960,531 14,199 4,141 10,914 2,389 10,409

Circle 1,533,462 540,138 16,088 4,173 12,579 2,161 9,075
Rectangle 1,037,880 1,035,720 21,082 4,646 14,510 2,222 11,970

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 25

(w, h), and the ROI scale. Since the face size in the image space differs depending on the
distance between the camera and the imaged object and individual differences, the ROI scale is

defined to cope with this change. As shown in FIG. 1, the specific extraction of HOG features is
performed by a) dividing the ROI into cells, b) calculating the luminance gradient for each cell,
and c) generating a luminance gradient histogram.

Input ROI Brightness gradient

ROI
ROI

ROI

Multi-scale

ROI
Raster scan

A cell
structure

FIGURE 8: Overview of HOG processing and raster scan.

SVM (Support Vector Machine) [38] is a kind of machine learning method that can be applied to
classification and regression problems. In face detection, it is determined whether the ROI is a
face or not as a binary classification problem. The advantage of SVM is that it increases the

generalization ability by maximizing the margin in the feature space.

4.6.2. Lightweight Object Detection Method using CCL

In this section, we propose a high-speed face candidate extraction process using a skin color
filter. FIGURE 9 shows the processing procedure. In this processing, skin color is extracted by
threshold using HSV color space, and fine noise is removed by expansion / shrinks processing.

Next, in order to remove a relatively large noise region, the CCL performed. If the size (number of
pixels) of the connected component is less than the specified value, the component region is
discarded as noise. That is, this is the HFP using foreground and background simultaneous CCL

proposed in section 3.3. Finally, the remained connected component is extracted as a face
candidate area (see the rectangle in FIGURE 9-4).

1. Input a binary image (thresholding in HSV) 2. Noises removal

3. Connected-Components Labeling 4. Small components removal

a. Estimated facial area

b. Detected facial area

FIGURE 9: Proposed face detection procedure.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 26

4.6.3. Evaluation
Classification by linear SVM using HOG features (conventional method) described in section

4.6.1 was implemented using an image processing C++ library called Dlib [39], and the face
detection time was measured. In addition, we implemented the proposed method described in
section 4.6.2 on a CPU and a GPU. On the CPU, the raster type was adopted for the CCL

because the raster type was faster than the propagation type as described in section 4.1.

TABLE 7: Processing time and speedup rate.

TABLE 7 shows the face detection time and the speed-up rate when the input image size is
changed. It was confirmed that the face detection time increased in proportion to the input image

size. The face detection processing by HOG + SVM took about 1 second, which is far from real -
time processing of about 30 fps. With the proposed method, the face detection process using the
FHD image as input is completed in about 60 ms even on the CPU, which is about 14 times faster

than the conventional method.

Here, the huge processing time, which is the drawback of face detection using HOG features and

SVM, was decreased by combining relatively simple image processing techniques. Furthermore
on GPU, by using a parallel label rewriting algorithm of CCL for GPGPU, processing was
completed in about 14 ms per FHD image, and about 71.4 fps was achieved. This is about 60

times faster than the conventional facial detection method.

Regarding the facial detection accuracy, the conventional method using SVM can detect 100%

faces for 30,000 images, whereas the proposed method can detect 27,761 images, which is
92.5% accurate. Although the proposed method has a detection accuracy of 90% or mo re, in
order to make this method more practical, it is considered that it is better to use this method to

reduce face candidate regions.

5. CONCLUSIONS
In this paper, we proposed 1) a rewrite algorithm for continuous label ID for GPGPU, and 2) a
parallel algorithm for hole filling using simultaneous connected components labeling for
foreground and background, and its optimization method.

In 1), an algorithm that rewrites for SIMD operation the label ID into a serial number achieved a
speed increase of approximately 9.2 times on average compared to the conventional method. As

a result, it is now possible to process by only all label search, without performing all pixel search
described in section 3.4. In 2), two CCLs were reduced to one by extracting the foreground and
background at the same time, and as a result, the idle time of the core in SIMD operations such

as GPGPU was reduced. Furthermore, we proposed a hole filling process using foreground and
background simultaneous CCL, and a computational reduction method using the properties of
label ID.

These proposed methods ware implemented on TX2 and when a practical leaf image is used as
the input image, the processing time is about 1.13-1.27 times faster than the conventional GPU

execution. In addition, it is about 1.40-2.46 times faster than the conventional CPU execution.
The processing time of the proposed method for full HD leaf images is about 18.6 milliseconds,
and the throughput is about 53.8 fps. By applying this proposed method to object detection, we

are able to achieve 60 times faster than the CPU implementation of the conventional method.

Image
size

Processing time (ms) Speedup ratio

Conv. Proposed (1)
/

(2)

(2)
/

(3)

(1)
/

(3)
CPU GPU

(1) (2) (3)
864 x 480 169.4 11.8 4.9 14.4 2.4 34.6

1,280 x 720 385.4 24.8 7.7 15.5 3.2 50.1

1,920 x 1,080 834.4 56.4 14.0 14.8 4.0 59.6

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 27

In this evaluation experiment, two artificial images and five types of leaf images were used, but in
order to strengthen the results of this research, evaluation experiments with more diverse images

are necessary. In the experiments so far, the number of scans for propagating the minimum label
ID was fixed, but when many types of images are targeted, it is necessary to dynamically
determine the number of scans. That is, once every several times of scanning, it is necessary to

judge whether the propagation is completed and terminate the scanning. Furthermore, it is
necessary to evaluate the trade-off between the judgement load and the reduction in the number
of scans.

The connected component labeling process for GPGPU has little room for optimization, and it has
been difficult to achieve higher speeds. However, we focused on wasted idols in the hole filling

process, proposed a method to reduce and supplement them, and realized a faster hole filling
process than the conventional method.

6. REFERENCES
[1] L. He, Q. Gao, X. Zhao, et al. “The connected-component labeling problem: A review of

state-of-the-art algorithms.” Pattern Recognition, vol. 70, pp. 25-43, Oct. 2017.

[2] Y. Purwar, S. L. Shah, G. Clarke, A. Almugairi, A. Muehlenbachs. “Automated and

unsupervised detection of malarial parasites in microscopic images .” Malaria Journal, vol.

10, no. 364, pp. 1-10, Dec. 2011.

[3] A. Ito, Y. Aoki, S. Hashimoto. “Accurate extraction and measurement of fine cracks from

concrete block surface image,”in Proc. 28th Annual Conference of the IEEE Industrial
Electronics Society (IECON02), vol. 3, 2002, pp. 2202-2207.

[4] A. Rakhmadi, M.S.M. Rahim, A. Bade, et al. “Loop back connected component labeling
algorithm and its implementation in detecting face.” International Journal of Computer,
Electrical, Automation, Control and Information Engineering, vol. 4, no. 4, pp. 635-640, Apr.

2010.

[5] Y. Bian, F. Dong, H. Wang. “Reconstruction of rising bubble with digital image processing

method,” in Proc. 2011 IEEE International Instrumentation and Measurement Technology
Conference, IEEE, 2011, pp.1-5.

[6] O. St., B. Benes. “Connected component labeling in CUDA” In GPU computing gems
emerald edition, W. W. Hwu, Morgan Kaufmann, 2011, pp.569-581.

[7] N. Shibata, S. Yamamoto. ”GPGPU-Assisted Subpixel Tracking Method for Fiducial
Markers.” Journal of Information Processing, vol. 22, no. 1, pp. 19-28, Jan. 2014.

[8] NVIDIA. “NVIDIA JETSON The embedded platform for autonomous everything.” https://
www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/, Apr.
29, 2020 [May. 07, 2020].

[9] K. Suzuki, H. Horiba, N. Sugie. “Linear-time connected-component labeling based on

sequential local operations.” Computer Vision and Image Understanding, vol. 89, no.1,

pp.1-23, Jan. 2003.

[10] K. Wu, E. Otoo, K. Suzuki. “Optimizing two-pass connected-component labeling

algorithms.” Pattern Analysis and Applications, vol. 12, no. 2, pp. 117-135, Jun. 2009.

[11] L. He, Y. Chao, K. Suzuki. ”A run-based two-scan labeling algorithm.” IEEE transactions on

image processing, vol. 17, no. 5, pp. 749-756, Mar. 2008.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 28

[12] S. Gupta, D. Palsetia, M. Patwary, M. Ali, A. Agrawal, A. Choudhary. “A new parallel
algorithm for two-pass connected component labeling.” In Proc. 2014 IEEE International

Parallel & Distributed Processing Symposium Workshops, 2014, pp. 1355-1362.

[13] O. Kalentev, A. Rai, S. Kemnitz, R. Schneider. “Connected component labeling on a 2D

grid using CUDA.” Journal of Parallel and Distributed Computing, vol. 71, no. 4, pp. 615-
620, Apr. 2011.

[14] N. Shibata, S. Yamamoto, “SumiTag: Uses a less noticeable AR marker and GPGPU Read
method.” IPSJ DPS research report, vol. 2011-DPS-149, no.7, pp.v1-9, in Japanese, Nov.
2011.

[15] N. Shibata, S. Yamamoto, “Implementation of parallel algorithm for connected component

extraction for CPU using AVX2 instruction set.” In Proc. Workshop on Multimedia

Communication and Distributed Processing (DPSWS2013), 2013, pp. 300-307, in
Japanese.

[16] H. Kawada, T. Kamiya, Y. Marutani, “A Method of Strain Inspection of Automotive Rearview
Mirror by Image Processing.” IEICE Transactions D, vol. J83-D2, no. 3, pp. 947-956, in
Japanese, Mar. 2000.

[17] T. Oshige, “Automatic inspection technology for quality evaluation of steel products.”

Measurement and control, vol. 55, no. 3, pp. 228-233, in Japanese, Mar. 2016.

[18] H. Ogawam D. Sakai. “Diagnosis of cucumber leaf disease by image processing.” Bulletin

of Aichi Univ. of Education, 58 (Natural Sciences), pp. 13-19, in Japanese, Mar. 2009.

[19] A. Hashidume, R. Suzuki, H. Yokouchi, H. Horiuchi, S. Yamamoto, “Red blood cell

automatic discrimination algorithm and its evaluation.” Medical electronics and

biotechnology, vol. 28, no. 1, pp. 25-32, in Japanese, Jan. 1990.

[20] J. Hasegawa, K. Mori, J. Toriwaki, Y. Yasuno, K. Katada, “Extraction of Lung Cancer

Candidate Regions from Chest Sequential CT Images by 3D Digital Image Processing.”
IEICE Transactions D, vol. J76-D2, no. 8, pp.1587-1594, in Japanese, Aug. 1993.

[21] J. Masumoto, M. Hori, Y. Sato, T. Murakami, T. Kamikou, H. Nakamura, S. Tamura, “Study
on automatic liver tumor extraction from X-ray CT images.” IEICE Transactions D, vol. J83-
D2, no. 1, pp. 219-227, in Japanese, Jan. 2000.

[22] J. Masumoto, M. Hori, Y. Sato, T. Murakami, T. Kamikou, H. Nakamura, S. Tamura,

“Automatic liver region extraction from multi-slice CT images.” IEICE Transactions D, vol.

J84-D2, no. 9, pp. 2150-2161, in Japanese, Sep. 2001.

[23] Y. Hayase, Y. Mekata, K. Mori, J. Hasegawa, J. Torwaki, M. Mori, H. Natori, “A method for

detecting multiple nodules from 3D chest X-ray CT images.” IEICE Transactions D, vol.
J87-D2, no. 1, pp. 219-227, in Japanese, Jan. 2004.

[24] Y. Hirano, J. Hasegawa, J. Toriwaki, H. Daimatsu, K. Eguchi, “Interactive lung tumor region
extraction from 3D chest CT images and its application to malignant differentiation.” IEICE
Transactions D, vol. J87-D2, no. 1, pp. 237-247, in Japanese, Jan. 2004.

[25] H. Furukawa, K. Ueda, R. Tachibana, N. Kido, “Extraction of liver region from 3D

abdominal CR image using CT value distribution information and template image.”

Computer Assisted Diagnostic Imaging Society, vol. 9, no. 3, pp. 27-35, in Japanese, Nov.
2005.

Hiroto Kizuna & Hiroyuki Sato

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 29

[26] A. Seal, S. Gangulyb, D. Bhattacharjee, M. Nasipuri, D.K. Basu. “Minutiae based thermal
human face recognition using label connected component algorithm.” Procedia Technology,

vol. 4, pp. 604-611, Feb. 2012.

[27] A. Hemlata, M. Motwani. “Face detection by finding the facial features and the angle of

inclination of tilted face.” International Journal of Computer Science Issues (IJCSI), vol. 10,
issue 2, pp.472-479, Mar. 2013.

[28] H. Arunachalam, M. Motwani. “Image segmentation for the extraction of face using haar
like feature”, Int. Arab J. Inf. Technol, vol. 13, no. 6A, pp.951-958, Dec. 2016.

[29] H. Kizuna, H. Sato. “Accelerating Facial Detection for Improvement of Person Identification
Accuracy in Entering and Exiting Management System.” In Proc. Sixth International
Symposium on Computing and Networking Workshops (CANDAR), 2018, pp. 202-208.

[30] H. Kizuna, H. Sato. “Acceleration of Face Detection for Improving Person Identification

Accuracy in Entrance / Exit Control System.” IEICE research report of Image Engineering,

vol. 117, no. 484, pp. 229-234, in Japanese, Mar. 2018.

[31] T. Miyake, S. Haruta, S. Horihata, “Gaze determination method using features that do not

depend on face orientation.” IEICE Transactions D, vol. J86-D2, no. 12, pp. 1737-1744, in
Japanese, Dec. 2003.

[32] D. D. Sidibe, P. Montesinos, S. Janaqi. “A simple and efficient eye detection method in
color images.” in Proc. International Conference Image and Vision Computing New Zealand
2006, pp. 385-390.

[33] Y. Saito, Y. Kenmochi, K. Kotani, “Extraction and removal of eyeglass frame area in face

image using parametric eyeglass frame model.” IEICE Transactions D, vol. J82-D2, no. 5,

pp. 880-890, in Japanese, May. 1999.

[34] T. Fuda, S. Omachi, H. Aso, “Recognition of Line Graph Images in Documents by Tracing

Connected Components.” IEICE Transactions D, vol. J86-D2, no. 6, pp. 825-835, in
Japanese, Jun. 2003.

[35] O. Shiku, A. Nakamura, “Character line extraction from scene image using LoG filter.”
IEICE Transactions D, vol. J87-D2, no.8, pp. 1735-1739, in Japanese, Aug. 2004.

[36] Y. Aramaki, Y. Matsui, T. Yamasaki, K. Aizawa, “Character region detection in comics
based on connected components and region classification.” IEICE Transactions A, vol.
J100-A, no.1, pp. 3-11, in Japanese, Jan. 2017.

[37] N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection.” in Proc.

International Conference on Computer Vision and Pattern Recognition (CVPR), 2005, vol.

1, pp. 886-893, 2005.

[38] V.N.Vapnik. “Statistical Learning Theory”, Wikey, New York, 1988.

[39] D. E. King. “Dlib C++ Library.” http://dlib.net/, Dec.14.2019 [Mar.11.2020].

