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Abstract 

 
The connected-component labeling (CCL) is a technique for extracting connected pixels having 
the same value. It is mainly used for abnormality diagnosis of products, and for extracting noise 

areas of products. In the extraction of product areas in product diagnosis, a hole filling p rocessing 
(HFP) is used to complement discolored areas. However, the HFP is inefficient, because the CCL 
needs to be executed twice in the foreground and background, and half of the threads are idle 

during each process. In this study, we propose a rewriting method for continuous label IDs with 
pixel-by-pixel parallelism, and a HFP method using simultaneous CCL of foreground and 
background. We implemented and evaluated these methods on Jetson TX2. The rewriting 

process to the continuous label ID is 3.7-13.8 times faster than the conventional method of 
sequential processing on the CPU, and on average 9.2 times faster. For the HFP using 
simultaneous CCL, we implemented and verified the conventional method that requires twice the 

CCL and the proposed method that can extract the foreground and background with one CCL.  
The performance of the proposed method is about 13-27% better than that of the conventional 
method. In addition, in the lightweight object detection method that is an application using the 

proposed method, the facial detection time is about 14 ms, which is about 60 times faster than 
the conventional method. As a result, the facial detection processing with high computational 
complexity can be operated practically even on an inexpensive and small processor. The CCL 

process for GPGPU has little room for optimization, and it has been difficult to achieve higher 
speeds. However, we focused on wasted idols in the HFP, proposed a method to reduce and 
supplement them, and realized a faster HFP than the conventional method. 

 
Keywords: Connected Component Labeling, Parallel Processing, GPGPU, Image Processing.  

 
 
1. INTRODUCTION 

Connected-Component Labeling (CCL) [1] is one of the most important kernels in image 
processing. It is a process that extracts a group of pixels connected with the same pixel value 
from the input image as a connected component. It is mainly used for diagnosis using images 

such as diagnosis of defects in production lines, medical image diagnosis using CT images, pest 
diagnosis of c rops and estimation of yield. An application of extracting objects or noise area in an 
image is a process that fills non-object area (perforation) in the object area (hereinafter referred to 

as hole filling process: HFP) [2][3][4][5]. The HFP can extract a noise-removed object region by 
connecting a non-object connected component with a small area to an object connected 
component. Processing methods such as histogram calculation are used to calculate the area of 

non-object connected components. Therefore, using the label ID added to the extracted 
connected components, the histogram bin (array) is accessed and the number of pixels is 
counted. However, the label ID of the final label image is a non-consecutive number, and the 
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maximum number can be the number of pixels of the input image. This degrades the locality of 
the access pattern to the histogram bin and causes cache efficiency  to decrease. Furthermore, 

resource efficiency is poor because it is necessary to secure the histogram bins for the number of 
pixels of the input image in the memory.  
 

CCL processing is computationally expensive compared with image processing kernels such as 
Gaussian filters and is likely to become a bottleneck in real -time processing. Furthermore, a 
general CCL algorithm is not suitable for SIMD (Single Instruction Multiple Data stream)  

architecture because it does not have simple parallelism and requires  a large number of complex 
branch instructions. Thus performance improvement by parallelization cannot be expected.  The 
HFP requires longer processing time because the connected components are extracted for the 

both foreground and background. 
 
In general, when processing images on a GPU, one thread is assigned to each pixel.  However, 

there is no need to extract the background when foreground components are extracted, and the 
foreground when background is extracted. As a result, half of the two CCL are in an idle state, 
and the processing time is long and the execution performance is degraded.  

 
In this study, we propose a parallel algorithm to rewrite the label IDs of CCL label images to 
consecutive numbers starting from 1 for the above-mentioned issues. In addition, in order to 

speed up the HFP, we propose a HFP algorithm using connected components that  
simultaneously extract the foreground and background components. We use the propagation 
CCL algorithm [6][7] which is for many-core architectures such as GPGPU proposed by Shibata 

et al. The implementation environment was Tegra X2 (TX2) [8] which is a small and lightweight 
embedded SoC with a GPU provided by NVIDIA. This is because it is assumed to be used in 
factory production lines and in-vehicle applications. In this study, we verified the processing 

speed and execution efficiency by parallelization on TX2.  
 
Section 2 explains the technologies used, related works, and general application techniques. In 

section 3, we explain two proposed methods: rewrite algorithm for continuous label ID for GPGPU 
and filling process using connected components extracted simultaneously foregr ound and 
background. Section 4 shows the results of verification, and section 5 concludes. 

 
2. RELATED TECHNOLOGIES 

2.1. CCL 

2.1.1. Algorithms 
CCL targets binary images with True (1) and False (0) values, adds one or more unique label IDs 
to connected pixel groups with the same pixel value, adds label IDs of 0 to the other pixels, and 

outputs a label image as shown in FIGURE 1 (d). There are two types of CCL processing 
algorithms: raster type and propagation type. In this research, we will focus on the extraction of 4 
connected components in the vertical and horizontal directions. Two methods are described 

below.  
 
The raster type sequentially scans from the upper left corner to the lower right of the binary image,  

and if there are foreground pixels in the two neighboring pixels which are up and left of the target 
pixel, the smallest label ID in them is added to the target pixel. If no foreground pixel exists, a new 
label ID is added to the target pixel. If the foreground pixel has the pattern shown in FIGURE 2 (b),  

different label IDs will be added even to the connected pixels, since the raster type scans from 
the upper left to the lower right. So, in the raster type, the identity of label IDs is stored using 
Look-Up Table (LUT), and the label is rewritten after labeling to all pixels is completed. Therefore, 

the amount of calculation is relatively lower than the  propagation type described below, since the 
connected components can be extracted by two scans. However, there is no simple parallelism, 
since it scans sequentially from the upper left to the lower right. 
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Propagation-type CCL processing consists of initialization, neighborhood search, and label ID 
update. These three processes have pixel-by-pixel parallelism and are suitable for GPUs. 
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FIGURE 1: Propagation Type CCL. 
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FIGURE 2: Example that cannot be connected by a single scan. 

 
In the initialization process, the array index is stored in all pixels of the label image. The array 

index is calculated by y x width + x, where (x, y) is the pixel coordinate and width is the image 
width. On the outer periphery of the label image, background labels IDs are stored for simplicity. 
 

The algorithm for CCL processing is shown in Algorithm 1. PROPAGATE is propagation 
processing and SEARCH_AROUND is neighborhood search. At lines 7 to 10 4 neighbors are 
searched, and at lines 11 to 15 the minimum label ID is store in the label image. Up(), left(), 

down(), right() at from line 7 to 10 are functions that return the relative neighborhood index of the 
argument p. Each correspondence is shown in FIGURE 1 (a). Atomic on lines 13 and 14 
indicates an atomic operation. The atomic operation prohibits reading and writing to the variables 

of other threads until an atomic operation thread finishes the operation, when multiple threads 
operate on a shared variable such as a global variable at the same time. There are functions 
such as min and max in atomic operations. These functions return minimum or maximum in a 

variable on a single thread. This is described on lines 13 and 14. The atomic operation result is 
obtained by performing <- (assignment) within the scope of the atomic operation.  
 

PROPAGATE is assumed to be executed in parallel, and the minimum label ID may be smaller 
after the neighborhood search than when 4 neighborhoods are referenced. So, by re-referencing 
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the label image with the searched minimum label ID, a small label ID that is farther away can be 
obtained in one scan, and the propagation speed is increased. By executing this propagation 

process multiple times, each connected component pixel group is replaced with the same unique 
label ID, and the connected component can be extracted. In the extracted label image, as shown 
in the FIGURE 1 (d), the smallest label ID (one-dimensional array index) among all the pixels in 

each connected component is propagated as a unique ID. Therefore, the maximum value of the 
label ID after propagation can be the number of pixels in the input image.  
 

After line 24 is the processing flow for generating sequential label images. Labels are propagated 
by executing PROPAGATE multiple times. In order to minimize the number of executions of 
PROPAGATE, global synchronization is performed every time the propagation process for all 

pixels is completed. 
 

 
 

Algorithm 1 CCL algorithm and conventional label continuation method

Rquire:

    Image array B

Ensure:

    Label image array L

1 : function SEARCH_AROUND(t, n)

2 :     if n  != 0  and  t  > n  then return n  else retun t  end if

3 : end function

4 : procedure PROPAGATE(L , p )

5 :        g <- o  <- L [p ]

6 :     if o != 0 then

7 :         g  <- SEARCH_AROUND(g,  L [up (p )])
8 :         g  <- SEARCH_AROUND(g,  L [left (p )])
9 :         g  <- SEARCH_AROUND(g,  L [down (p )])

10 :         g  <- SEARCH_AROUND(g,  L [right (p )])
11 :         g  <- L [L [L [L [g]]]]

12 :         if g  != 0 then

13 :             atomic (L [o ] <- min (L [o ], g ))
14 :             atomic (L [p ] <- min (L [p ], g ))

15 :         end if

16 :     end if

17 : end procedure

18 : procedure UPDATE_LUT(L p , lastId )

19 :     if L [p ] != 0 and T [Lp ] = 0 then

20 :         lastId  <- lastId  + 1
21 :         T [Lp ] <- lastId

22 :     end if

23 : end procedure

24 : for p <- 1, IMAGE_SIZE  do in parallel

25 :     if B [p ] = 0 then L [p ] <= 0 else L [p ] <- p  end if

26 : end for

27 : for count  <- 1, IMAX_NUM_LOOPS  do

28 :     for p  <- 1, IMAGE_SIZE  do in parallel

29 :         PROPAGATE(L,  p )

30 :     end for

31 : end for

32 : lastId  <- 0

33 : for p  <- 1, IMAGE_SIZE  do

34 :     UPDATE_LUT(L [p ], lastId )

35 : end for  



Hiroto Kizuna & Hiroyuki Sato 

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 12 

2.1.2. Related Works on CCL 
The CCL algorithm has been researched for a long time [1]. Several methods for ensuring 

parallelism have been proposed for the problems of raster algorithms that lack simple parallelism.  
 
Raster Type 

Suzuki et al. proposed a four-time scanning-type CCL algorithm whose processing time was 
linearly proportional to the image size without depending on the geometric shape, by performing  
forward search from the upper left and backward search from the lower right [9]. Double-scan 

CCL algorithm proposed by Wu et al.  records the link information between multiple provisional 
labels pasted during a first scan, and changes the global label link  relationship by Union-find [10]. 
The process is completed by writing back the label using the connection relation information 

during the last second scan. The two-scan CCL proposed by He et al. reduces the memory 
access by evaluating the identity of the label for each connected component unit for each raster, 
instead of evaluating for each pixel at the time of scanning [11]. 

 
Propagation Type 
[12] proposes a parallel algorithm of CCL, and achieves a speed increase of about 20 times on a 

24-core CPU. [13] proposes two algorithms for GPGPU. One is a technique that applies reduction 
processing. The other is a combination of a general label connectivity  evaluation method and a 
neighborhood search method. In [6], the speed is improved by dividing the input image and 

transferring to a high-speed on-chip memory, and then propagating labels on it. In [7][14] [15], the 
propagation speed of the label ID is improved by searching the minimum label ID again using the 
label ID searched after the peripheral pixel search cons idering the characteristics of 

asynchronous processing.  
 
2.1.3. Application of CCL 

CCL is mainly used for object detection and diagnosis using binary  images generated from two-
dimensional features. Application examples are product defect diagnosis on production l ines, pest 
diagnosis of crops, yield estimation, medical image diagnosis  using optical images and CT 

images, and object detection.  
 
[16] aims to improve production efficiency by detecting defective products by st rain inspection 

early in the manufacturing process of rearview mirrors. The inspection proposed here is realized 
by irradiating a glass surface with an equally -spaced circular pattern, capturing the image, 
extracting each circular pattern from the captured image, and using the distance relationship 

between the circular patterns. CCL process is used when this circular pattern is detected. [17] 
has realized automation of surface inspection of rolled steel products. The research on 
automation of this surface inspection has been devised for a long time, and it was initially used for 

rough inspection by laser, and now, research is being made toward the realization of relatively 
high precision inspection using CCD. In this document, the hue and the reflection of light are 
specified from the image of the product surface, the defective area is specified from the color 

difference and the luminance, and the area is extracted by CLL.  
 
[3] proposes an inspection system that automatically extracts concrete cracks from captured road 

surface images. Reflection of outside light is extremely limited, since the cracked area becomes a 
groove. Using this phenomenon, the image is binarized using the characteristic luminance and 
color difference that appears when the image is taken, and the crack region is detected by CCL. 

[18] has proposed a lesion diagnosis system using optical images for the purpose of disease 
diagnosis of crops. Diseases of agricultural crops have characteristic patterns and color  
differences in the leaves, so disease diagnosis is performed by  extracting those features. In 

addition, the severity of the disease is quantitatively measured by  investigating the ratio of the 
lesion area to the entire leaf area. Information on leaf area or lesion area extracted by CCL is 
used for both disease diagnosis and severity calculation.  

 
Medical diagnosis using medical images has been actively studied for a long time. In [19], the 
abnormality diagnosis of red blood cells is automated, and the image captured by the microscope 
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is used to binarize the color features and the platelets are extracted by CCL. [2] automates the 
detection of platelets and the detection of malaria parasites in the blood by image processing.  In 

[20][21][22][23][24][25], by extracting organs, blood vessels, cancer, and tumor areas using single 
or multiple slices, The 3D CG reconstruction of organ images, the extraction of lesion areas due 
to disease, and disease estimation diagnosis are realized. In both cases, connected components 

are extracted from CT images to extract organs, blood vessels, and lesion areas, and features 
such as shape and hue are used for each connected component.  
 

In object detection, [4][26][27][28][29][30] proposes face detection using color features, and 
[28][31][32] estimates the gaze area and face area by analyzing the positional relationship nd 
movement of the eyeball from the captured image. In object detection, feature image is generated,  

and CCL is used to extract a face region block. In [33], in order to suppress the disturbance 
caused by glasses in face recognition, the glasses area is automatically extracted and removed 
from the face image. In object detection, the feature image is generated in all cases and CCL is 

used to extract the face area blocks. 
 
[7][13] has developed and verified a new AR marker that can be recognized at high speed while 

maintaining the recognition accuracy of the existing AR marker or higher. CCL is used to extract 
the proposed marker pattern from the image, and it is accelerated by GPGPU.  [34][35][36] 
attempted to recognize characters and graphs from scanned sentences or cartoon images. 

Connected components are extracted from the binary image generated by colors and image 
filters, and characters and graphs are extracted as one component by using the area of each 
component and the correlation with the neighboring components of the component.  

 
2.1.4. Summary and Issues of CCL 
As explained in section 2.1.3, CCL is used in various fields of applications. CCL is used to 

calculate the area of each component and the distance and number of components. However, the 
label ID of the final label image is discontinuous as in FIGURE 1 (d), and the maximum value of 
ID can be the total number of pixels in the input image. In the implementation that counts the area 

by array using the label ID of each component as a key, memory access is discontinuous, it is not 
suitable for CPU speed-up mechanism, and resource utilization efficiency is poor. Furthermore, 
threshold processing using the calculated area is performed in units of labels, but processing for 

all pixels is required since all label IDs must be processed. In CCL, it is extremely important to 
perform the above-mentioned label re-sticking process at high speed. This is because it is used in 
applications that require extremely high real-time properties such as product inspection, medical 

diagnosis using images, and object recognition of faces and markers.  
 
Machine learning methods such as SVM, which was developed in the 2000s, and deep learning, 

which has been attracting a lot of attention since the 2010s, have extremely high accuracy. 
However, it requires a learning phase over several tens of hours by  creating learning datasets 
with abundant volumes and using high-performance computing resources. In addition, relatively 

high computational resources are often required in also the detection and recognition phases of 
actual operations. Therefore, it cannot always be stated that these machine learning methods are 
suitable for high-speed inspection systems using embedded devices. Considering the trade-off 

between the inspection speed and the processing speed, there is a high need for inspection 
systems based on manual feature extraction and region extraction.  
 

2.2. HPF using Background Connected Components 
Here, the HFP is explained using the FIGURE 3 for the diagnosis of leaf disease by image 
processing. (a) is an input image, and (b) is a binary image obtained by thresholding (a) based on 

leaf color information. The HFP is used to complement the leaf area that could not be extracted 
from the input image by threshold processing. The threshold is experimentally set using the 
normal green feature of the leaf, but there is a disease region in the leaf of (a), and the color is 

changing. Therefore, the lesion area cannot be extracted as a leaf area as shown in (b). As 
shown in (b), the lesion area inside the leaf area is determined as background areas such as 
holes. Therefore, the leaf area is complemented by using a HFP that makes the background area 
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foreground. The result is (c). The procedure of this HFP is realized by extracting the connected 
components of the background region, generating the area histogram of the background 

components, and then foregrounding the small background components.  
 

Foreground Background

(a) Input image (c) Filled holes 

→ →

(b) Binarized Image  
 

FIGURE 3: HFP on Binary Image. 

 
2.2.1. Application of HFP 

One of the practical uses of extracting objects and noise areas in an image is processing to fill  
non-object areas (holes) existing in the object area [2][4][5][18]. In [2], when binarization using 
color information is performed to extract the blood cell system existing in the blood, red blood 

cells are often imaged in a donut shape, and the central part is missing and extracted. Therefore, 
the HFP is used to extract the central part of the donut shape as the same object.  [4] is a simple 
face detection process based on an image containing a face area photographed under limited 

conditions. The HFP is applied to complement the face area that could not be extracted by the 
hue information. [5] is a study of the theory of bubbles rising in a liquid. Observing and 
reconstructing the actual behavior in the natural world is extremely important in clarifying the 

principle. Using an experimental device that generates bubbles in the liquid, the behavior of the 
bubbles is photographed and they understand the behavior by tracking the position. The purpose 
of this research is to automate the behavior analysis.  They have proposed a method that extracts 

the outline of bubbles from a photographed image and extracts the entire bubble as a single 
object by HFP. After that, they analyses by matching using a bubble shape model. [18] diagnoses 
disease using leaf images as described in section 2.2. The HFP is used to integrate the missing 

area into the leaf area since the lesion area of the leaf is discolored.  
 
By connecting non-object connected components with a small area to the object connected 

components by the HFP, it is possible to extract the object region from which noise has been 
removed. Processing methods such as histogram calculation are used to calculate the area of 
non-object connected components. 

 
2.3. GPGPU 
In recent years, the GPU, which is a processor on a graphic board, has grown significantly, and 

now it has reached the theoretical performance more than 10 times the CPU. The GPU is a 
processor optimized for graphics applications such as 3D modeling and computer graphics, but 
general-purpose scientific and technical computations can be processed at high speed if the 

algorithm is suitable for this GPU architecture. For this reason, research and development of 
computation methods suitable for this GPU has been actively pursued in recent years and is 
called GPGPU (General Purpose Graphics Processing Units). Among these, application results 

have been reported in various fields such as image processing, weather forecasting, and 
encryption processing. However, in order to maximize the original performance of the processor 
in application execution, there is a problem that it is necessary to understand the GPU structure 

and apply an execution control method suitable for it.  
 



Hiroto Kizuna & Hiroyuki Sato 

International Journal of Imaging Processing (IJIP), Volume (14) : Issue (2) : 2020 15 

2.3.1. Mobile GPGPU Environment  
The performance of so-called SoC (System-on-a-Chip) which is a processor for mobile terminals 

such as smartphones and tablet PCs, has made remarkable progress.  In March 2017, NVIDIA 
announced Tegra X2, an SoC that integrates a CPU and GPU [8]. Although the TX2 is a very 
small board of 50x87mm square and business card size as shown in FIGURE 4, it is equipped 

with 256 CUDA cores used in also desktop systems and supports general -purpose computing 
technology. NVIDIA Jetson TX2 development kit equipped with Tegra X2 was released. This is a 
small board size of 13 inches square and a low price of $599. This TX2 meets the constraints 

such as size, weight and power consumption when loading on a drone and is very suitable for our 
system. 
 

  
 

FIGURE 4: NVIDIA Tegra X2 Board. 

 
3. PROPOSED METHOD 
In this section, we propose a rewriting algorithm for continuous label ID for GPGPU, a hole-filling 
algorithm using connected components extracted simultaneously foreground and background, 
and a reduction and speedup of the calculation. 

 
3.1. Label Rewriting Algorithm 
In the application implementation of this research, the area of the connected component is 

calculated. This process is so-called histogram calculation. In a processing system that does not 
have a dictionary data structure, it is calculated by incrementing the array eleme nt for recording 
using the label ID as a key. However, after CCL, the label ID is not continuous from 1 as in the 

FIGURE 1 (d). So, Cache hit rate is significantly reduced since the array is accessed using the 
non-continuous label ID as a key. In addition, there are many unused memory areas and the 
memory utilization efficiency is low. Furthermore, when this processing is executed in parallel on 

the GPU, a memory area that is the number of parallel executions multipl ied by the number of 
pixels is required, which is unrealistic. 
 

One solution to this problem is to rewrite non-contiguous label IDs to continuous label IDs starting 
from 1. The rewriting process is shown on lines 18 to 23 of Algorithm 1. T is a LUT for recording 
the correspondence between non-continuous labels and continuous labels for each component. T 
is a one-dimensional array with elements for the number of pixels, the indices are non -continuous 

labels, and the element values are continuous label IDs. The variable lastId holds the label ID that 
was last acquired. By incrementing this variable, a new continuous ID can be acquired and T can 
be updated. Since the variable lastid cannot be incremented simultaneously, the rewriting 

process cannot be simply parallelized. Therefore, when updating T on a GPU, almost all cores 
become idle, processing time is long, execution efficiency is extremely low, and it is not suitable 
for GPGPU. So, we propose a rewriting algorithm based on IF statement control for continuo us 

labels with pixel -by-pixel parallelism. 
 
The algorithm is shown in lines 16 to 22 of Algorithm 2. The ID of the label image extracted from 

connected components used in this study is the array index. Also, since each thread is 
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responsible for processing one pixel, the thread always has a unique ID, which is the same 
coordinate system as the array index of the label image. Each component of the final label image 

extracted from the connected component has a minimum array index written as a label ID, and a 
thread having a thread ID that matches the minimum label ID is uniquely determined. So, the 
thread whose thread ID and label ID match becomes the representative thread for that 

component. After that, the representative thread acquires a unique continuous label ID, records 
the relationship between the non-continuous label ID and the continuous ID in the LUT, and uses 
the LUT to rewrite the label image with the continuous label ID.  

 

Algorithm 2 Simultaneous foreground and background CCL method and label

continuation method

Rquire:

    Image array B

Ensure:
    Label image array L  look-up table array T , label to array index look-up table

LabelToIdx , last label ID LastId
1 : function SEARCH_AROUND2(bt , t , bn , n )

2 :     if bt  xor bn  != 0  and  t  > n  then return n  else retun t  end if

3 : end function

4 : procedure PROPAGATE2(B , L , p )

5 :     g <- o  <- L [p ]
6 :     g  <- SEARCH_AROUND2(B [p ], g,  B [up (p ], L [up (p )])
7 :     g  <- SEARCH_AROUND2(B [p ], g,  B [left (p ], L [left (p )])
8 :     g  <- SEARCH_AROUND2(B [p ], g,  B [down (p ], L [down (p )])
9 :     g  <- SEARCH_AROUND2(B [p ], g,  B [right (p ], L [right (p )])

10 :     g  <- L [L [L [L [g]]]]

11 :     if g  != 0 then

12 :         atomic (L [o ] <- min (L [o ], g ))
13 :         atomic (L [p ] <- min (L [p ], g ))

14 :     end if

15 : end procedure

16 : procedure UPDATE_LUT_BY_SAME_PIXELVALUE(L , T , LabelToIdx , p ,

17 :     if T [L [p ]] = p  then

18 :         atomic (u <- ++lastId)
19 :         T [L[p ]] <- max (T [L [p ]], u )
20         LabelToIdx [L [p ]] <- u

21 :     end if

22 : end procedure

23 : for p <- 1, IMAGE_SIZE  do in parallel

24 :     L [p ] <- p
25     T [p ] <- 0

26 : end for

27 : for count  <- 1, IMAX_NUM_LOOPS  do

28 :     for p  <- 1, IMAGE_SIZE  do in parallel

29 :         PROPAGATE2(B , L,  p )

30 :     end for

31 : end for

32 : lastId  <- 0

33 : for p  <- 1, IMAGE_SIZE  do in parallel

34 :     UPDATE_LUT_BY_SAME_PIXELVALUE(L , T , p , lastId )

35 : end for  
 
3.2. Foreground and Background Simultaneous CCL  

The outline is the same as the algorithm described in the section 2.1. Only the parts that differ 
greatly are extracted and explained using Algorithm 2.  
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In the initialization process, the connected components are extracted at the same time for the 
foreground and background, so a one-dimensional array index is stored for all pixels except for 

1px around the label image. There are two main differences between the foreground and 
background simultaneous propagation processing and the fore ground or background only 
propagation processing. In the vicinity search of Algorithm 1, if the target pixel is the background, 

the connection judgment of the surrounding pixels is not performed. The first difference is that the 
foreground and background are extracted simultaneously in this process, so the connection 
judgment is performed regardless of the target pixel value.  The second difference is that this 

process judges whether the values of the binary image corresponding to the target pixel and the 
surrounding pixels are the same. For this judgment, XOR is used for speeding up, and the 
property that it always becomes 0 when the input values are the same is used.  

 
Finally, the process of rewriting to continuous label ID is shown on lines 16 to 26. The LUT is 
checked for all pixels, since both the foreground and background are rewritten   simultaneously. If 

the label of the LUT is the initial value, the representative thread of each component acquires the 
new label ID and stores it. 
 

As described in section 3.1, label IDs of the label image are rewritten to the serial number. 
However, even if the label image is rewritten to the serial number label at the end of this CCL 
process, it is necessary to rewrite the serial number label ID again in order to integrate the 

foreground components by the HFP. So, it is a slow and useless calculation. Therefore, in the 
fore-background simultaneous CCL used for the HFP, only generation of the LUT that records the 
relationship between the non-continuous label ID and the continuous ID is performed, and the 

label is rewritten after the HFP. The continuous label ID is rewritten to a unique ID of the same 
set regardless of the foreground / background, since the foreground / background can be judged 
from binary images. 

 
3.3. HFP using Foreground and Background Simultaneous CCL  
In this section, we propose a HFP using connected components that have been extracted 

simultaneously the foreground and background proposed in section 3.2. We explain using a 
FIGURE 5 which shows briefly the relationship between the foreground and background labels.  
(a) is a label image that records the connected components extracted simultaneously with the 

foreground and background at the section 3.2, and this is the initial value for the filling process. 
The index prefixed with L in the figure is the label ID of each component, and the magnit ude 
relationship of the index part matches the nature of the original label ID.  In this HFP, the 

connected components of the foreground and background have already been extracted.  The 
components to be filled are background components, but its neighboring components are always 
foreground components, so the foreground component label IDs are integrated after 

foregrounding the background components. 
 
Step1. Area calculation of Foreground and Background Components and Extraction of 

Small Components  
A histogram of the number of pixels for each foreground / background component is generated. 
Unlike the section 2.2, a histogram for both foreground and background components is generated.  

This is because, at the end of the section 3.2, a new continuous label ID is generated for the 
foreground and background, and it corresponds to it.  Label IDs of the label image are rewritten 
with the continuous label IDs of this LUT, and a histogram is generated with the continuous label 

IDs. It is possible to generate a histogram only for the background, but in this case, background 
label judgment is required using a conditional expression after referring to the binary image.  
Conditional expressions can cause stalls in multistage pipelines of computing units, and SIMD 

operations that perform the same processing on multiple data cannot be applied, which can 
cause speed performance degradation. Therefore, a histogram is generated for both the 
foreground and background.  
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Next, if each component area is less than or equal to the threshold value, True is stored in the 
integration flag of the component. In (b), "Filling" are written as background components t o fill the 

hole, and these are {L3, L5}.  
 

foreground background format: current label ID

(previous label ID)

(c) Propagating labels (d) Propagated labels

(a) Initialized (b) Foregroundization

(F1)
(B3)

(F2)

(F3)

(B2)

L1

L2
L3: Filling

L4

L6

L5: Filling

L1

L2
L3

L4

L6

L5

L2
L2(L3)

L2(L4)

L2(L6)

L4(L5)

L1

L2
L2

L2

L2

L2

L1

 
 

FIGURE 5: Foregroundization of Small Background Components. 

 
Step2. Foregroundization of Small Background Components  

Next, the binary image that records the foreground / background information of each pixel is 
rewritten. The integrated judgment result of each label and the binary image are of the same type, 
and the integrated judgment result of each label is added to the binary image as a foreground 

pixel by bit operation.  
 
Step3. Integrated Search for Foreground and Background Labels  

In Step 2, the L3 and L5 labels in (b) have become foreground from the background, so the labels 
L2-L6 all become the same connected component. However, each component has a different 
label ID, and it is necessary to integrate different label IDs of these same components into the 

same label ID. Here, we propose a method for integrating different label IDs of the same 
component. The algorithm is shown in Algorithm 3. It is designed to produce correct results even 
if executed in parallel. MERGING_FOREGROUND searches for foreground components for 4 

neighborhoods, and SMF is the search algorithm. If the component is foreground and the 
neighborhood label ID is smaller than the label ID, the neighborhood label ID is used as the label 
ID. LUT is used to refer to and rewrite label IDs. In this algorithm, only foreground label IDs are 

propagated, and background components become the initial value 0 (background label ID) of the 
LUT. (c) shows the propagation process, and (d) shows the integrated LUT that completed the 
propagation. In (c), the components that propagated the label IDs describe the label IDs before 

and after propagation.  
 
Step4. Generation of New Continuous Label ID Correspondence Information  

Since label IDs propagated in Step 3 are array indexes, these are non-consecutive numbers. 
Therefore, a LUT for rewriting the foreground label IDs after integration into continuous label IDs 
is generated. This algorithm is shown on lines 15-24. T records the relationship between label IDs 

at the time of CCL and the minimum foreground label IDs integrated by foreground, and T’ 
records the correspondence between the integrated label IDs and the new continuous label IDs.  
Note that unlike the acquisition of continuous label IDs in the section 3.1, it is sufficient in this 
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process to perform label update checks for the total number of labels in foreground / background 
CCL.  

 

Algorithm 3 HFP using Foreground and Background Simultaneous

Rquire:
    Image array B, look-up table array T , label to arrayindex look-up

table LabelToIdx , last label ID lastId
Ensure:

    Label image array L

1 : function SMF(T , t , bn , n )

2 :     if bn  = 1 and  T[t]  > T [n]  then return n  else retun t  end if

3 : end function

4 : procedure MERGING_FOREGROUND(B , L , T , p )

5 :     if B [p ] = 1 then

6 :         g  <- L [p ]
7 :         g  <- SMF(T , g , B [up (p) ],  L [up (p )])
8 :         g  <- SMF(T , g , B [left(p) ],  L [left (p )])
9 :         g -> L[L[g]]

10 :         if T [L [p ]] != g  then

11 :             atomic (T [L [p]] <- min (T [L [p ]], T [g] ))

12 :         end if

13 :     end if

14 : end procedure

15 : procedure UPDATE_LUT_FOR FILLING HOLES(T , T' , l , lastId )

16 :     if T' [T [l ]] = 0  then

17 :         atomic (v  <- --T' [T [l ]])
18 :         syncthreads()

19         if v  = -1 then

20             atomic (lastId  <- i +1)
21             T' [T [l ]] <- lastId

22         end if

23 :     end if

24 : end procedure

25 : for count  <- 1, IMAX_NUM_LOOPS  do

26 :     for l  <- 1, lastId  do in parallel

27 :         MERING_FOREGROUND(B , L,  T , labelToIdx [l ])

28 :     end for

29 : end for

30 : lastId'  <- 0

31 : for p  <- 1, IMAGE_SIZE  do in parallel

32 :     UPDATE_LUT_FOR_FILLING_HOLES(T , T' , l , lastId' )

33 : end for  
 
3.4. Optimization HFP using Foreground and Background Simultaneous CCL  
In the section 3.3, the HFP for GPGPU is explained. In the HFP, background components that 

became the foreground are always connected to the surrounding foreground components. As a 
result, multiple foreground components may be connected to surrounding foreground 
components. The computational order of this search process can be reduced from the total 

number of input image pixels to the number of foreground and background labels. This reduction 
method is explained in this section.  
 

As explained in the section 3.3, foreground component integration is achieved by searching for 
connectivity to the neighborhood of all pixels in the image and propagating a smaller foreground 
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label ID. As propagating label IDs, discontinuous label IDs used when extracting connected 
components are used. These label IDs are array indexes, and the label ID of each component is 

the smallest array index of each component, that is, the array index existing at the upper left of 
the same component. It is guaranteed that the label IDs of components that exist above or to the 
left of a component are always smaller than the label ID of that component, and conversely, the 

label IDs of components that exist below or to the right are greater than the label ID of that 
component.  
 

All the pixels were searched for the connectivity check of the component. As mentioned above,  
the label ID of a certain component is the smallest pixel index existing at the upper left of the 
component. In other words, by referring to the label image by each label ID (pixel index) and 

searching the pixels above and to the left of the pixels, the connectivity of all the components can 
always be checked. As a result, in the connectivity check process, all the pixels have been 
searched so far, but it is sufficient to search all the number of labels Ln times in the sequential 

processing. When executed in parallel on the GPU, it is possible to link all the labels with a 
shallow component nesting by searching all the labels about twice, but for an image with a deep 
component nesting, it is necessary to search all the labels about 8 times or more. The foreground 

component integration algorithm using these properties is shown on lines 25 to 29 of Algorithm 3.  

 
4. EXPERIMENTAL RESULTS 
In this section, we veri fy and evaluate the speedup rate and computational efficiency of the HFP 
by the background and background simultaneous CCL using the conventional method and the 
proposed method. To verify GPGPU implementation, NVIDIA's Jetson TX2 was used, so it was 

implemented with CUDA (Compute Unified Device Architecture), a development environment 
provided by the company.  
 

4.1. Experimental Environment 
As the execution environment, we used the above-mentioned CPU and GPU on TX2. TABLE 1 
shows the experimental environment. 

 
 
 

 
 

 
TABLE 1: This is Table 1. All tables must be aligned Centered. 

 

TABLE 1: Experiment Environment. 

 
 

 
 
 

 
 

 
 

 
 

TABLE 2: Raster type and propagation type processing time (microsecond) and its ratio in CPU. 

 
The two CCL methods described in the section 2.1 are implemented for the CPU, and the result 
is shown in TABLE 2. Propagation-type CCL was about 1.1-6.5 times slower than the raster type. 
For this reason, on the CPU, raster-type CCL was adopted for HFP. 

 

Spec Jetson TX2 
CPU Cortex-A57@2GHx 4 Cores 

# GFLOPS 16.0 

GPU Pascal@1.3GHz 256 Cores 
# GFLOPS 665.6 

OS Ubuntu 16.04 LST 

 

Image Size 
Laster Type  Propagation Type Rtio 

Leaf Circle Rect. Leaf Circle Rect. Leaf Circle Rect. 

480 x 270 1,506 1,588 1,539 1,752 2,326 1,692 1.16 1.47 1.10 

960 x 540 3,754 4,833 2,740 6,735 8,176 6,291 1.79 1.69 2.30 

1,920 x 1,080 10,732 11,874 6,379 25,984 32,587 24,506 2.42 2.74 3.84 

3,840 x 2,160 36,425 44,542 21,243 104,108 129,558 97.225 2.86 2.91 4.58 

7,680 x 4,320 134,786 200,298 75,975 401,985 540.460 492.963 2.98 2.70 6.49 
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4.2. Propagation of Foreground Component Labels and its Verification 
In our proposed method, the HFP is realized by integrating the foreground components. This 

integration process is performed by propagating the minimum label ID in the connected 
component as described in the section 3.3. However, in the image with nested foreground and 
background components such as FIGURE 6, when the outer-most or inter-most component ID is 

the smallest,  it is need to propagate N-1 times to integrate all connected foreground components, 
where N is the number of nested foreground components. In sequential execution, it will be a 
raster scan from the upper left to the lower right of the image, so propagation is always completed 

with one scan. In the worst case for propagation, i f all pixels are processed in parallel, all pixel 
values are acquired and the neighborhood search and minimum label ID are stored 
simultaneously. So, the label ID that can be propagated in one scan is one neighborhood.  For this 

reason, it is necessary to scan all pixels N-1 times to complete the propagation process. However,  
by limiting the number of execution threads during this operation, the timing of scanning each 
pixel is shifted, and there is a high possibility that a small label ID will propagate more quickly.  In 

this experiment, the number of scanning processes described above was set to 1.  
 

        
 

FIGURE 6: Nested Images. 

 
In this experiment, 5 types of leaf images and 2 types of artificial images were prepared and 
converted to 5 image sizes, respectively and we used them. The HFP was performed 1,000 times 

for this data set. It was confirmed that all connected foreground components of the label image 
generated at each execution were successfully connected.  
 

4.3. Speedup of Rewriting Non-sequential Label IDs to Sequential Numbers 
We verified a parallel algorithm for rewriting non-continuous label IDs into continuous IDs 
described in the section 3.1. The conventional sequential processing was implemented and 

executed on one core of the GPU and CPU. However, the GPU is about 100 times slower than 
other methods, so the evaluation of the results is omitted. Each processing time and the 
acceleration rate are shown in TABLE 3. And, the graph that visualized the acceleration rate is 

shown in FIGURE 7.  
 
 

 
 
 

 
 

 
 

 
TABLE 3: Processing time (microseconds) and acceleration rate of the label rewriting. 

 
Compared with the conventional method, the proposed method using equivalence judgment is 
about 3.7-13.8 times faster, and on average about 9.2 times faster. For the proposed method, 
execution time and image size are linearly proportional. In the conventional method, as shown in 

FIGURE 7, there is a difference in processing time when the image size is 960x540 or less and 
otherwise. This is probably because the memory usage of the label image is small, about 500 KB, 
and the cache hit rate is high. 

Image Size 
Proposed on GPU Conventional on CPU Conv. / Prop. 

Leaf Circle Rect. Leaf Circle Rect. Leaf Circle Rect. 

480 x 270 170 172 172 650 640 664 3.83 3.72 3.87 

960 x 540 552 585 585 2,231 2,190 2,215 4.04 3.74 3.78 

1,920 x 1,080 1,959 2,100 2,105 27,047 27,162 27,317 13.81 12.94 12.97 

3,840 x 2,160 7,806 8,582 8,484 105,210 106,228 106,468 13.48 12.38 12.55 

7,680 x 4,320 31,527 35,471 34,304 417,027 421,328 417,174 13.23 11.88 12.16 
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FIGURE 7: Acceleration rate and processing time increase rate in label rewriting process. 

 
4.4. Speedup of Histogram Generation due to Label Rewriting 

Here, we evaluate the speedup of histogram generation due to label rewriting.  By rewriting to a 
continuous label, the cache hit rate is improved, but it is verified whether the processing time is 
shortened including the rewriting time. TABLE 4 shows histogram generation time, label rewriting 

time and speed up rate on TX2 and NVIDIA GeforceGTX970M for the deskside PC.  In the table, 
“Hist.” is the histogram generation time, and “Total” is the time including label rewriting. “Conv. ” is 
a conventional method that does not rewrite labels, and only the time for the histogram 

generation is “Total”. 
 

 

 
 
 

 
 

 
 

 

 
 

 
 
 

 
 
 

 
 
 

TABLE 4: Histogram generation time (microseconds) and speedup rate due to label rewriting. 

 
The histogram generation is explained. In the conventional method, the size of t he histogram bin 
corresponds to the resolution of the input image. For this reason, a high -speed histogram 
generation method using shared memory cannot be used unless the image size is small. Instead, 

the histogram is generated by atomic operation to the histogram bin stored in the global memory. 
On the other hand, in the proposed method, the size of the histogram bin is reduced to the 

T
y

p
e

 

Image 
 
 

Size 

on TX2 on Deskside PC (GTX970M) 

Proposed Conv. Speedup Proposed Conv. Speedup 

Hist. Total Hist. Hist. Total Hist. Total Hist. Hist. Total 

L
e

a
f 

A
v

g
. 

480 x 270 305 474 330 1.08 0.70 152 192 187 1.23 0.98 

960 x 540 734 1,292 804 1.10 0.62 368 480 586 1.59 1.22 

1,920 x 1,080 2,375 4,367 2,595 1.09 0.59 960 1,351 2,093 2.18 1.55 

3,840 x 2,160 9.077 17,112 12,458 1.37 0.73 3,060 4,467 6,804 2.22 1.52 

7,680 x 4,320 36,044 68,628 42,203 1.17 0.62 11,980 17,553 27,435 2.29 1.56 

C
ir

c
le

 

480 x 270 296 468 333 1.12 0.71 149 190 196 1.32 1.04 

960 x 540 691 1,276 772 1.12 0.61 355 472 638 1.80 1.35 

1,920 x 1,080 2,161 4,261 2,657 1.23 0.62 898 1,308 2,037 2.27 1.56 

3,840 x 2,160 8,145 16,727 12,410 1.52 0.74 2,781 4,322 7,355 2.65 1.70 

7,680 x 4,320 32,071 67,543 40,898 1.28 0.61 10,767 17,106 28,893 2.68 1.69 

R
e

c
ta

n
g

le
 

480 x 270 301 472 320 1.07 0.68 149 189 197 1.32 1.04 

960 x 540 707 1,292 872 1.23 0.68 359 474 636 1.77 1.34 

1,920 x 1,080 2,222 4,328 3,000 1.35 0.69 915 1,322 2,009 2.29 1.59 

3,840 x 2,160 8,362 16,845 11,550 1.38 0.69 2,855 4,326 7,306 2.56 1.69 

7,680 x 4,320 32,895 67,198 46,927 1.42 0.70 11,021 17,009 29,345 2.66 1.73 
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number of connected components by rewriting the label to continuous IDs, so that a high-speed 
shared memory can be used.  

 
In the execution results on TX2, the proposed method is slower. On the other hand, the proposed 
method is faster on the GeforceGTX970M. The histogram generation time ratio of the 

conventional / proposed method on TX2 is about 1.1-1.5 times, while that on the GTX970M is 
1.2-2.7 times. This difference can be attributed to an increase in the number of locks in atomic 
operations due to an increase in the number of concurrently executing threads. TX2 has 256 

CUDA cores, while GTX970M has 1,280 cores. On the GTX970M with a large number of cores, 
effect of using high-speed shared memory for histogram generation in the proposed method is 
large. As a result, the increase in the number of cores increases the access probability to the 

same element, and it is thought that the operation delay is caused by the lock of the atomic 
operation. 
 

4.5. Whole Execution Time of HFP 
TABLE 5 shows processing time and speedup rate of HFP. The number of pixels in each image 
is four times larger, and it can be seen that the processing time is roughly proportional to the 

number of pixels. The speedup rate of the proposed method compared with the conventional 
method of GPU execution is 1.19-1.27 times for leaf images, which are practical data sets. For 
artificial images, it is 1.14-1.22 times for Circle and 1.02-1.04 times for Rectangle. In Rectangle, 

the proposed method is slower, but the performance of the proposed method is higher in other 
images. The speedup rate of the proposed method compared with the conventional method of 
CPU execution is 1.40-2.46 times for leaf images, 1.22-2.16 times for Circle and 1.12-1.97 times 

for Rectangle. Again, some of the proposed methods are slower in Rectangle, but the 
performance of the proposed method is higher in other images. 
 

 
 
 

 
 
 
 

 
 
 

 

 
 

 
 
 

 
 

 
 

TABLE 5: Processing time (microseconds) and speedup rate of HFP. 

 
TABLE 6 shows the processing time of each kernel in each image of the proposed method and 
the conventional method. Only the results for images with a resolution equivalent to Full HD 

(1,920 x 1,080) are shown in this table, but it has been confirmed that the trend of processing 
time variation described below is the same for all resolution images. The leaf images are 
extracted by two different features. “Number of Pixels” indicates the number of pixels in the 

background connected component (Back-ground) and foreground connected component (Fore-
ground) of each image. “FB-CCL”, “HFP” corresponds to foreground and background 

T
y

p
e

 

Image 
 
 

Size 

Proposed Conventional Speedup 

on on vs. 

GPU GPU CPU GPU CPU 

L
e

a
f 

A
v

g
. 

480 x 270 1,521 1,808 3,741 1.19 2.46 

960 x 540 5,039 6,807 10,242 1.13 2.03 

1,920 x 1,080 18,604 23,507 30,336 1.26 1.63 

3,840 x 2,160 72,423 88,363 104,895 1.22 1.45 

7,680 x 4,320 280,091 355,982 392,934 1.27 1.40 

C
ir

c
le

 

480 x 270 1,603 1,849 3,461 1.15 2.16 

960 x 540 5,661 6,879 11,023 1.22 1.95 

1,920 x 1,080 20,261 23,815 26,858 1.18 1.22 

3,840 x 2,160 81,352 92,764 99,272 1.14 1.22 

7,680 x 4,320 328,415 375,714 412,114 1.14 1.26 

R
e

c
ta

n
g

le
 

480 x 270 1,994 2,031 3,933 1.02 1.97 

960 x 540 7,791 7,923 8,730 1.02 1.12 

1,920 x 1,080 27,728 28,702 23,968 1.04 0.86 

3,840 x 2,160 126,694 116,933 85,397 0.92 0.67 

7,680 x 4,320 547,248 467,065 327,606 0.85 0.60 
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simultaneous connected component labeling and hole filling process, respectively. “B-CCL”, 
“HFP”, “F-CCL” corresponds to background connected component labeling, hole filling process, 

and foreground connected component labeling, respectively.  

 
 

 
 

 
 

 
TABLE 6: Each kernel processing time (microseconds). 

 
There is a processing time difference of about 10-20% between leaf images and arti ficial images. 
In the case of the conventional method, the difference is due to the connected component 

labeling time. Binary images, which are the input of "B-CCL" and "F-CCL" for leaf images, have a 
large foreground component area, so the connected component extraction time was increased.  In 
the case of the artificial image Rectangle, the connected component labeling time also increased 

as in the case of the leaf image because the area of the foreground component of the input binary 
image of "F-CCL" was large.  
 

The ratio of the HFP time of the proposed method to the total processing time is much larger than 
that of the conventional method, and the execution time is about 1.7 to 3.0 times that of the 
conventional method. This is due to the foreground integration process which has a large amount 

of computation in the proposed method.  
 
The conventional method used for comparison in Sections 4.3, 4.4 is the method used in many of 

the various systems shown in Section 2.1.3. Similarly, the conventional method used in Section 
4.5 is the method used in many of the various systems shown in Section 2.2.1. Therefore, the 
results in Sections 4.3, 4.4, and 4.5 show that the proposed method is superior to other systems. 

 
4.6. Applying to Object Detection 
We evaluate the application of our proposed HFP method using simultaneous CCL of foreground 

and background. The application is a lightweight object (face) detection using CCL. 
 
Object detection is a method to estimate the coordinates and area of the target object from the 

input image. This technique is often used as preprocessing for object recognition, and can 
improve recognition accuracy by limiting the image which is input to the classifier to the object 
region to be recognized. As a general and specific example of object detection, we explain using 

facial detection. There are four processing procedures: a) preprocessing of the input image, b) 
feature extraction, c) entire region search using the coincidence degree, and d) object region 
estimation. B) has a significant effect on the facial detection accuracy. A) includes noise reduction 

of images and correction of camera lens characteristics. C) searches the entire area for face 
position, using the likelihood of a face-like or human-skin-like in each pixel or region defined in b). 
Therefore, this process is computationally expensive and takes a huge amount of time.  

 
4.6.1. General Object Detection Method 
This section describes the commonly used HOG features and SVM -based object detection. HOG 

(Histogram of Oriented Gradients) [37] calculates a histogram of the luminance gradient and uses 
the histogram as a feature value. It is often used as a feature of objects with distinctive edges 
such as cars, human bodies, and faces. In object detection using HOG, a detection area called 

ROI (Region of Interesting) is defined, and the degree of coincidence with the detection target 
object is measured using images in the ROI area. Using this, it evaluates and estimates which 
position of the input image is close to the feature of the object to be detected for each ROI.  The 

parameters that define the ROI are often defined by the position (x, y) in the image, the ROI size 

 

Image 

Number of Pixels Processing Time 

Back-
ground 

Fore-
ground 

Proposed Conventional 
FB-CCL HFP B-CCL HFP F-CCL 

Leaf A 662,419 1,411,181 14,401 4,454 9,388 2,393 12,114 
Leaf B 1,113,069 960,531 14,199 4,141 10,914 2,389 10,409 

Circle 1,533,462 540,138 16,088 4,173 12,579 2,161 9,075 
Rectangle 1,037,880 1,035,720 21,082 4,646 14,510 2,222 11,970 
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(w, h), and the ROI scale. Since the face size in the image space differs depending on the 
distance between the camera and the imaged object and individual differences, the ROI scale is 

defined to cope with this change. As shown in FIG. 1, the specific extraction of HOG features is 
performed by a) dividing the ROI into cells, b) calculating the luminance gradient for each cell, 
and c) generating a luminance gradient histogram. 

 

Input ROI Brightness gradient

ROI
ROI

ROI

Multi-scale

ROI
Raster scan

A cell 
structure

 
 

FIGURE 8: Overview of HOG processing and raster scan. 

 
SVM (Support Vector Machine) [38] is a kind of machine learning method that can be applied to 
classification and regression problems. In face detection, it is determined whether the ROI is a 
face or not as a binary classification problem. The advantage of SVM is that it increases the 

generalization ability by maximizing the margin in the feature space.  
 
4.6.2. Lightweight Object Detection Method using CCL 

In this section, we propose a high-speed face candidate extraction process using a skin color 
filter. FIGURE 9 shows the processing procedure. In this processing, skin color is extracted by 
threshold using HSV color space, and fine noise is removed by expansion / shrinks processing.  

Next, in order to remove a relatively large noise region, the CCL performed. If the size (number of 
pixels) of the connected component is less than the specified value, the component region is 
discarded as noise. That is, this is the HFP using foreground and background simultaneous CCL 

proposed in section 3.3. Finally, the remained connected component is extracted as a face 
candidate area (see the rectangle in FIGURE 9-4).  

 
1. Input a binary image (thresholding in HSV) 2. Noises removal

3. Connected-Components Labeling 4. Small components removal

a. Estimated facial area

b. Detected facial area

 
 

FIGURE 9: Proposed face detection procedure. 
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4.6.3. Evaluation 
Classification by linear SVM using HOG features (conventional method) described in section 

4.6.1 was implemented using an image processing C++ library called Dlib [39], and the face 
detection time was measured. In addition, we implemented the proposed method described in 
section 4.6.2 on a CPU and a GPU. On the CPU, the raster type was adopted for the CCL 

because the raster type was faster than the propagation type as described in section 4.1. 
 
 

 
 
 

 
 

 
 

TABLE 7: Processing time and speedup rate. 

 
TABLE 7 shows the face detection time and the speed-up rate when the input image size is 
changed. It was confirmed that the face detection time increased in proportion to the input image 

size. The face detection processing by HOG + SVM took about 1 second, which is far from real -
time processing of about 30 fps. With the proposed method, the face detection process using the 
FHD image as input is completed in about 60 ms even on the CPU, which is about 14 times faster 

than the conventional method.  
 
Here, the huge processing time, which is the drawback of face detection using HOG features and 

SVM, was decreased by combining relatively simple image processing techniques.  Furthermore 
on GPU, by using a parallel label rewriting algorithm of CCL for GPGPU, processing was 
completed in about 14 ms per FHD image, and about 71.4 fps was achieved.  This is about 60 

times faster than the conventional facial detection method.  
 

Regarding the facial detection accuracy, the conventional method using SVM can detect 100% 

faces for 30,000 images, whereas the proposed method can detect 27,761 images, which is 
92.5% accurate. Although the proposed method has a detection accuracy of 90% or mo re, in 
order to make this method more practical, it is considered that it is better to use this method to 

reduce face candidate regions. 

 
5. CONCLUSIONS 
In this paper, we proposed 1) a rewrite algorithm for continuous label ID for GPGPU, and 2) a 
parallel algorithm for hole filling using simultaneous connected components labeling for 
foreground and background, and its optimization method. 

 
In 1), an algorithm that rewrites for SIMD operation the label ID into a serial number  achieved a 
speed increase of approximately 9.2 times on average compared to the conventional method. As 

a result, it is now possible to process by only all label search, without performing all pixel search 
described in section 3.4. In 2), two CCLs were reduced to one by extracting the foreground and 
background at the same time, and as a result, the idle time of the core in SIMD operations such 

as GPGPU was reduced. Furthermore, we proposed a hole filling process using foreground and 
background simultaneous CCL, and a computational reduction method using the properties of 
label ID.  

 
These proposed methods ware implemented on TX2 and when a practical leaf image is used as 
the input image, the processing time is about 1.13-1.27 times faster than the conventional GPU 

execution. In addition, it is about 1.40-2.46 times faster than the conventional CPU execution. 
The processing time of the proposed method for full HD leaf images is about 18.6 milliseconds, 
and the throughput is about 53.8 fps. By applying this proposed method to object detection, we 

are able to achieve 60 times faster than the CPU implementation of the conventional method.  

 

Image 
size 

Processing time (ms) Speedup ratio 

Conv. Proposed (1) 
/ 

(2) 

(2) 
/ 

(3) 

(1) 
/ 

(3) 
CPU GPU 

(1) (2) (3) 
864 x 480 169.4 11.8 4.9 14.4 2.4 34.6 

1,280 x 720 385.4 24.8 7.7 15.5 3.2 50.1 

1,920 x 1,080 834.4 56.4 14.0 14.8 4.0 59.6 
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In this evaluation experiment, two artificial images and five types of leaf images were used, but in 
order to strengthen the results of this research, evaluation experiments with more diverse images 

are necessary. In the experiments so far, the number of scans for propagating the minimum label 
ID was fixed, but when many types of images are targeted, it is necessary to dynamically 
determine the number of scans. That is, once every several times of scanning, it is necessary to 

judge whether the propagation is completed and terminate the scanning. Furthermore, it is 
necessary to evaluate the trade-off between the judgement load and the reduction in the number 
of scans.  

 
The connected component labeling process for GPGPU has little room for optimization, and it has 
been difficult to achieve higher speeds. However, we focused on wasted idols in the hole filling 

process, proposed a method to reduce and supplement them, and realized a faster hole filling 
process than the conventional method.  
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