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Abstract 

In low-dose cone-beam computed tomography, the reconstructed image is contaminated with 
excessive quantum noise. In this work, we examined the performance of two popular noise-
reduction algorithms—total-variation based on the split Bregman (TVSB) and total-variation based 
on Nesterov’s method (TVN)—on noisy imaging data from a computer-simulated Shepp–Logan 
phantom, a physical CATPHAN phantom and head-and-neck patient. Up to 15% Gaussian noise 
was added to the Shepp–Logan phantom. The CATPHAN phantom was scanned by a Varian OBI 
system with scanning parameters 100 kVp, 4 ms, and 20 mA. Images from the head-and-neck 
patient were generated by the same scanner, but with a 20-ms pulse time. The 4-ms low-dose 
image of the head-and-neck patient was simulated by adding Poisson noise to the 20-ms image. 
The performance of these two algorithms was quantitatively compared by computing the peak 
signal-to-noise ratio (PSNR), contrast-to-noise ratio (CNR) and the total computational time. For 
CATPHAN, PSNR improved by 2.3 dB and 3.1 dB with respect to the low-dose noisy image for the 
TVSB and TVN based methods, respectively. The maximum enhancement ratio of CNR for 
CATPHAN was 4.6 and 4.8 for TVSB and TVN respectively. For data for head-and-neck patient, 
the PSNR improvement was 2.7 dB and 3.4 dB for TVSB and TVN respectively. Convergence 
speed for the TVSB-based method was comparatively slower than TVN method. We conclude that 
TVN algorithm has more desirable properties than TVSB for image denoising. 

Keywords: Low-Dose CBCT, Nesterov’s First Order Method, Split Bregman Method, Total-
Variation Method.

 

1. INTRODUCTION 
Cone-beam computed tomography (CBCT) has been extensively used in radiation therapy to 
acquire high-resolution volumetric images of patients for treatment positioning [1-5]. However, 
CBCT uses ionizing X-ray radiation for imaging, which raises critical concerns about the risks 
associated with the extra radiation dose delivered to patients [6-8] because of the repeated use of 
CBCT during the treatment course. Current clinical protocols use a CBCT dose per scan of 
approximately 1 cGy for central tissues and a higher dose for most of the peripheral tissues [7,8]. 
Although the dose from a single scan is acceptable, the accumulation of doses over the treatment 
course (usually 4–6 weeks) can be substantial. The extra radiation exposure to normal tissue during 

mailto:sovaniitk@gmail.com
mailto:Jonathan.Farr@stjude.org
mailto:Weiguang.Yao@stjude.org


Sovanlal Mukherjee, Jonathan B. Farr & Weiguang Yao 

International Journal of Image Processing (IJIP), Volume (10) : Issue (4) : 2016 189 

CBCT increases the risk of cancer and genetic defects. Therefore, it is essential to minimize the 
unwanted CBCT radiation dose in order for patients to benefit from this modern medical imaging 
methodology.  

The CBCT radiation dose can be reduced by minimizing the number of X-ray projections or 
reducing the product of the X-ray tube current and total exposure time (mAs). In CBCT, a filtered 
back-projection (FBP) algorithm originally proposed by Feldkamp, Davis, and Kress (FDK 
algorithm) [9-11] is widely adopted for image reconstruction from the projection. However, FDK-
based CBCT reconstruction requires a sufficient number of X-ray projections. If the number of 
projections is inadequate, the FDK algorithm can cause aliasing artifacts in the reconstructed image 
because the Nyquist–Shannon sampling theorem is violated. For a reduced mAs, FDK 
reconstruction produces quantum noise in the images because of the reduced number of incident 
and detected photons. Both these properties of FDK-based algorithms are undesirable if a low-
dose treatment procedure is required, especially for pediatric patients.   

To overcome the artifact and noise problem imposed by FDK in low-dose imaging, various noise-
reduction algorithms have been proposed, such as the penalized weighted least-squares (PWLS) 
method [12-14], total variation (TV)–based reconstruction [15-24] and the compressed sensing 
(CS) method [25-34]. Each of these algorithms is an optimization problem [35] that involves 
minimizing a cost or penalty function by using a standard iterative minimization routine.  

In this study, we adopted TV-based noise-reduction algorithms to reduce the noise from low-dose 
imaging. The TV-based reconstruction proposed by Rudin, Osher, and Fatemi (ROF model) [15] 
was used to reduce noise from images contaminated by excessive noise. TV-based reconstruction 
works on the principle that minimizing the integral of the absolute gradient of an image, also known 
as the TV-norm of an image, reduces higher-frequency components such as streak artifacts and 
noise. Because the artifacts and noise usually exhibit a higher absolute gradient or TV, minimizing 
the gradient can help reduce the artifacts and noise [15].  

The fundamental assumption of these TV-based algorithms is that the corresponding noise-free 
image is sparse. However, the noise property, scatter and beam hardening effect, and particularly 
the anatomical structures of CBCT images of patients challenge the sparseness assumption. It is 
therefore valuable to examine the performance of these algorithms on low-dose CBCT of patients. 
In this study, we applied TV-based algorithms to (1) a computer-generated Shepp–Logan phantom; 
(2) a physical CATPHAN phantom; and (3) imaging data from head-and-neck patient. Application 
to the Shepp-Logan phantom was mainly for the benchmark of the performance. In order to test 
the performance in highly noisy images of the CATPHAN phantom and patients, the images were 
from not only low mAs scanning but also the minimal slice thickness (0.38 mm).  The TV-based 
image denoising algorithms were directly applied to the CBCT noisy reconstructed image. The 
performance of the algorithms was evaluated by the peak signal-to-noise ratio (PSNR), contrast-
to-noise ratio (CNR) and the total computational time. For The physical CATPHAN phantom, 
imaging data was acquired by scanning the phantom with a Varian® cone-beam CT system with 
scanning parameters of 100 kVp, 20 mA, and 4 ms with full 644 projections. For clinical data, we 
used imaging data from head-and-neck patient. For the head-and-neck patient, the scanning 
parameters were 100 kVp, 20 mA, and 20 ms with 358 projections. The 4-ms imaging data from 
the head-and-neck patient was simulated by adding Poisson noise to the 20-ms imaging data. For 
the TV-based algorithm, the split Bregman method [22, 36] and Nesterov’s first-order method [37, 
38] were used to solve the minimization problem.  

This paper is organized as follows. Section 2 describes the mathematical models of 3 noise-
reduction algorithms. Section 2.1 describes TV-based reconstruction by using the split Bregman 
iteration technique. Section 2.2 presents the TV algorithm based on Nesterov’s first-order method. 
Section 2.3 describes the mathematical model used to compute the PSNR and CNR. Sections 3 
and 4 present the results and discussion, respectively, and Section 5 gives the conclusions. 
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2. METHODS 
2.1 Total Variation Minimization using the Split Bregman Iterative Technique 

The TV regularization technique was first studied by Rudin, Osher, and Fatemi [15] for denoising 

an image corrupted by Gaussian noise. Given a noisy image f and a denoised image g , the ROF 

model considers the solution of the following convex optimization problem: 
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where x and y are discretized horizontal and vertical derivatives, respectively;   is a small 

positive parameter added to suppress singularity from the TV-norm; i and j are indices of pixels 
along the horizontal and vertical directions, respectively, of an N   N image; and N is the pixel size 

of the image. In equation (3), x  and y  are approximated by the finite difference scheme as 
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TV minimization works on the principle that minimizing the gradient of an image reduces high-
spatial-frequency components such as streaking artifacts and noise. More information about the 
ROF model is available in the literature [15, 40]. 

The ROF model was later modified by Goldstein and Osher [22] who adopted a split Bregman 
iteration scheme for solving the TV-regularized convex minimization problem. In this study, we 
applied the Goldstein and Osher model for image denoising by solving a constrained optimization 
problem of the following form [22]: 
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where d is the Bregman distance [22] and is given in equation (7); b is a variable related to the 

Bregman iteration;   and   are positive smooth and penalty parameters, respectively; and g

is the gradient of image g and is defined in equation (4).    

Goldstein and Osher [22] solved equation (5) by using an alternating direction method, that is,  
minimizing g while keeping d fixed and vice versa. We followed the same approach for our study. 
According to the method of Goldstein and Osher [22], each step of the model can be summarized 
as follows: 
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given tolerance 0,0,0   paramaters   

Step 1: initialize 0,0,0 000  dbg  

for k=0,1,2… 

Step 2 : solve g subproblem 
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Step 4: update b 
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break; end 

In equation (6), 
* is the transpose of the gradient operator . In our study, equation (6) was 

solved by using the conjugate gradient method [41] because of its faster convergence. 

 
2.2 Total Variation Minimization Using Nesterov’s First-Order Method 

In this study, we also solved the TV minimization problem using a different approach proposed by 
Nesterov in his seminal papers [37, 38].  We solved the TV minimization problem of the form 
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In equation (9), f is the original noisy N  N image, g is the reconstructed denoised image, 
2

is 

the l2-norm, and  is the inconsistency tolerance between f and g. 

Following Nesterov’s method [37, 38], the optimization problem in equation (9) can be rewritten as 
the following saddle-point problem: 
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and u is a dual variable that can be defined by 
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In equation (13), g  is the gradient of g  and can be solved by equation (4) and  is a smoothing 

parameter.  

Following Nesterov’s approach, we smooth the following regularization function: 
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x , y  of a function are defined in equation (4). 

Finally, the overall Nesterov’s algorithm can be summarized as follows:     
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Following the variable transformation introduced by Dahl et al. [24], equations (17) and (18) can be 
solved as follows: 
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where  is the standard deviation of the noise and  is the smoothness parameter. 

In the above steps, 
kg is a vectored form, that is, the column-wise stacking of g  for iteration k . 

The same holds true for
kkk Gzy ,, , and 

kw .  The original noisy image f was also vectored before 

applying Nesterov’s algorithm. 

2.3 Computation of the Peak Signal-to-Noise Ratio and the Contrast-to-Noise Ratio  

In this study, for a quantitative comparison of the denoised images, the PSNR and CNR were 
computed. The PSNR was computed for the Shepp–Logan, CATPHAN phantom and clinical data 
from head-and-neck patients, and the CNR was computed for the CATPHAN phantom.  
  
For an N   M image, the PSNR was computed using  

PSNR (dB) = 
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In equation (27), f is the reference image and g  is the reconstructed image. Because the PSNR 

is inversely proportional to the MSE, the low error between the reconstructed and reference image 
yields a higher PSNR.  
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In this study, the CNR was computed using [14] 
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where s and s are the mean and standard deviation, respectively, of the pixel intensity at a 

region of interest (ROI) and b and b are the mean and standard deviation, respectively, of the 

pixel intensity at the background. Higher the CNR of a region within an image, higher is detectability 
of the region. In this study, the CNR was computed for the CATPHAN phantom. 

3. RESULTS 
In this section, we show the noise-reduced images of the Shepp–Logan phantom, the CATPHAN 
phantom, and head-and-neck images from the patient that was processed by the TVSB and TVN-
based noise-reduction algorithms. The algorithms reduced noise from the FBP-reconstructed 
image. To compare the performance of the algorithms, the PSNR, CNR, and the total computational 
time was calculated. 
 
3.1 Shepp–Logan Phantom Study 
We studied the performance of the TVSB and TVN algorithms for a 512 × 512 two-dimensional 
(2D) Shepp–Logan phantom. For studying the algorithms, various levels of Gaussian noise were 
added to the original phantom. Figures 1(a)–(c) show the original 2D Shepp–Logan phantom. A 
5%, 10%, and 15% Gaussian noise was added to the phantom, as shown in Figs. 1(d), (e), and (f) 
respectively.  The denoised images obtained using the TVSB and TVN for individual noise levels 
are shown in Figs. 1(g)–(i) and 1(j)–(l), respectively. Figure 2 shows the line profiles of the original, 
noisy, and denoised phantoms for various noise levels. Tables 1 and 2 list the PSNR and the total 
computational time for TVSB and TVN methods respectively. For TVSB-based method, the 
improvement of PSNR was 15.10 dB, 16.10 dB, and 16.90 dB for 5, 10 and 15% noise respectively. 
For TVN, the corresponding improvement was 15.68 dB, 17.50 dB and 18.18 dB. The total 
computational time for TVN method was relatively lesser than TVSB as depicted by table 2.  
 
3.2 CATPHAN Study 

The performance of TVSB and TVN-based algorithms was also evaluated for a CATPHAN 504 
phantom (The Phantom Laboratory, Salem, NY). The phantom was scanned by a calibrated On-
board Imager (OBI) integrated with Trilogy (Varian Medical Systems, Palo Alto, CA).The flat panel 
aSi detector consists of 1024 × 768 pixels, and each pixel has a dimension of 0.38 mm × 0.38 mm. 
The phantom was scanned for a full 360 degrees, and 644 projections were acquired. The scanning 
parameters were the same as those routinely used in the clinic (i.e., 100 kVp and 20 mA), but pulse 
times of 4 ms and 32 ms were used for the low- and normal-dose images, respectively. Figure 3(a) 
shows the FBP-reconstructed image of CATPHAN for 644 projections with the scanning 
parameters of 100 kVp, 20 mA, 32 ms, and reconstruction slice thickness 0.38 mm, and this image 
was considered as the normal-dose reference image. Figure 3(b) shows the FBP-reconstructed 
image of the same CATPHAN but with the scanning parameters of 100 kVp, 20 mA, and 4 ms, and 
this image was considered as the low-dose noisy image. The 4-ms CATPHAN image was 
processed by using the TVSB and TVN methods, and the reconstructed images are shown in 
Figures 3(c) and (d) respectively.  Table 3 lists the PSNR and computational time for the two 
algorithms for CATPHAN.  The improvement of PSNR with respect to the noisy image was 2.3 and 
3.1 dB respectively for TVSB and TVN based methods. The TVN method was computationally 
faster than TVSB as was depicted by table 2.  The contrast-to-noise ratio (CNR) was computed at 
two regions of interest (ROI-1 and 2) for CATPHAN as shown in figure 3 (a). Table 4 lists the 
computed CNRs of the selected ROIs. For ROI-1, the CNR increased from 1.57 to 3.80 and 3.87 
for TVSB and TVN method respectively. For ROI-2, the corresponding enhanced CNRs were 1.67 
and 1.74 from 0.36.   
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3.3 Head-and-Neck Patient Study  
For clinical data, images from a head-and-neck patient were acquired by using the Varian® OBI 
scanner at scanning parameters of 100 kVp, 20 mA, 20 ms, and reconstruction slice thickness 0.38 
mm. The detector consists of 1024 × 678 pixels, and patient data were acquired with 358 
projections over 200 degrees. A full bow-tie filter was used for patient positioning. Figure 4(a) shows 
the FBP-reconstructed 20-ms image from the first head-and-neck patient, which was considered 
as a normal-dose reference image. Figure 4(b) shows the reconstructed 4-ms image that was 
simulated by adding the Poisson noise to the 20-ms image. Figures 4(c) and (d) show the 
reconstructed images processed by the TVSB and TVN methods, respectively. Table 5 lists the 
PSNRs and computational time for each algorithm for the head-and-neck data. The improvement 
of PSNR was 2.7 and 3.4 dB for TVSB and TVN based methods respectively. As for Shepp-Logan 
and CATPHAN, TVN method showed the same trend of faster computation than TVSB as was 
shown in table 5.  
 
We also studied the effect of different regularization parameters pertaining to TVSB and TVN based 
methods and showed the processed denoised images for the head-and-neck data in figures 5 and 
6 respectively.    

4. DISCUSSION 
Reconstructing a low-dose CBCT image is essentially a noise problem. FBP is a widely accepted 
analytical technique to reconstruct images from CBCT projection data, but it generates noise and 
sharp artifacts on the reconstructed images, especially when the mAs settings in the CBCT protocol 
are reduced. The reduced mAs settings are desired in the clinical protocol to reduce the radiation 
dose given to the patient. Various iterative reconstruction routines, such as the algebraic 
reconstruction technique (ART) [10,11], simultaneous-ART (SART) [10], PWLS [12-14], TV [16-
21], and CS [28-34], have been proposed to reconstruct images from comparatively fewer 
projection data obtained from a reduced mAs settings. However, iterative algorithms are 
computationally more expensive and time consuming than FBP, and therefore translating these 
methods to radiation therapy in the clinical settings has been much debated. However, the 
computational time of the iterative algorithms can be reduced significantly by using graphic 
processing units (GPUs) parallel programming [46, 47]. 
 
In recent years, image denoising by using the TV [15-24] and CS [25-34] methods has been widely 
investigated. TV-based denoising is essentially a minimization problem wherein the gradient of an 
image function is minimized by using standard minimization methods, as was shown in equations 
(1), (5), and (9). In this study, we adopted the split Bregman method [22] and Nesterov’s first order 
method [37, 38]. For validation, the algorithms were first applied to a digital Shepp–Logan phantom. 
The noise was reduced substantially as indicated by the reconstructed image, the proximity of the 
denoised line profile with the original profile, and a 15 to 18 dB improvement of the PSNR with 
respect to the noisy image. The convergence obtained using Nesterov’s method was faster than 
that using the split Bregman method, as indicated by the computational time (Table 2).  One 
potential reason for the higher computational time for TVSB based method is that the TVSB 
involves iterative conjugate gradient method as a technique to solve an intermediate step (eq. 6) 
as opposed to the analytical solution for all the intermediate steps in TVN. 

The TV-based denoising method was also applied to a CATPHAN® phantom and data from head-
and-neck patient. Noise was reduced in the reconstructed images, and there was a maximum 3.1 
dB improvement of the PSNR with respect to the noisy image for CATPHAN. For the head-and-
neck data, maximum PSNR improvement was 3.4 dB. To further evaluate the performance of TV-
based algorithms, the CNR for a selected ROI was computed (Fig 3).  For CATPHAN, ROI-1 and 
ROI-2 (ROI-1 having a higher contrast than ROI-2) were selected for CNR computation. By using 
TV-based methods, CNR enhancement ratios of 2.46 and 4.83 were obtained for ROI-1 and ROI-
2, respectively, with respect to the noisy image (Table 4).   

The CNRs computed by using TV-based algorithms were further compared with the CNRs from 
other noise reduction algorithms [14, 45] for CATPHAN as was listed in table 4.  
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The performance of TV-based algorithms largely depends on the selection of regularization 
parameters. In this study, the parameters were chosen on the basis of computation of the highest 
PSNR or CNR. Tables 6 and 7 list the individual parameters for the Shepp–Logan and CATPHAN 
phantoms and data from the head-and-neck patient. We showed the effect of different 
regularization parameters on the denoised images for the head-and-neck patient data in figures 5 
and 6. An over-smoothing effect and loss of fidelity of the images was observed with an increasing 
regularization parameter as was shown in figures 5 and 6 for both the TVSB and TVN based 
methods.    

In this study, in order to directly examine the performance of the algorithms, we have not used any 
noise-reduction filters prior to processing the CBCT reconstructed image through TV-based 
algorithms. Furthermore, 0.38 mm slice thickness was used in the reconstruction of the kV CBCT 
volumetric images to keep the highly noise level in the reconstructed slices. The noise level 
depends on the scanning parameter including mAs, the reconstruction parameters mainly the pixel 
size and slice thickness, and the reconstruction algorithm. 

In this work, all computations were performed by using MATLAB® 8.1.0 in a Linux workstation with 
32 GB of memory and an Intel® (core-i7) 3.4-GHz processor.  

5. CONCLUSIONS                
We implemented two noise-reduction algorithms TVSB and TVN to reduce the noise from low-dose 
CBCT images. The performance of the algorithms was evaluated by the reconstructed image, 
PSNR, CNR, and the computational time. An increase in the PSNR and CNR with respect to the 
noisy image supported the feasibility of these algorithms in reducing noise from low-dose images. 
In terms of noise reduction and total computational time, TVN-based methods performed better 
than TVSB.   
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APPENDIX 
 

 

FIGURE 1: (a) ,(b) and (c) Original 512 x 512 Shepp-Logan Phantom, (d) ,(e) and (f) 5%, 10% and 15% 

additive Gaussian noise added to the phantom respectively, (g), (h) and (i) Respective denoised images 

using TVSB,  (j),(k), and (l) Respective denoised images using TVN. 
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FIGURE 2: (a) , (b) and (c): Line profiles of original, noisy and denoised Shepp-Logan phantom for 5%, 10% 

and 15% Gaussian noise respectively. The line profile was plotted across the dashed yellow vertical line 

shown on the phantom image. 

 

 

FIGURE 3: (a) Scanned CATPHAN image with the scanning parameters of 100 kVP, 20 mA and 32 ms 

(used as a “Gold Standard” image), (b): Same CATPHAN scanned with 4 ms (used as a low-dose noisy 

image), (c) and (d) Processed 4 ms CATPHAN image through TVSB and TVN algorithm respectively. 

Regions of interest (ROIs) for computing the CNRs were shown in Fig. 3(a). 
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FIGURE 4: (a) Scanned imaging data from the head-and-neck patient with the scanning parameters of 100 

kVP, 20 mA and 20 ms (used as “Gold Standard” image), (b) Same data scanned with 4 ms pulse time (used 
as a low-dose noisy image), (c) and (d) Processed 4 ms data through TVSB and TVN algorithm respectively. 

 

 

FIGURE 5: (a) Scanned imaging data from the head-and-neck patient with the scanning parameters of 100 

kVP, 20 mA and 4 ms (used as “noisy” image), (b)  and (c) Processed 4 ms data through TVSB algorithm for 

three different regularization parameters. 
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FIGURE 6: (a) Imaging data from the head-and-neck patient with the scanning parameters of 100 kVP, 20 

mA and 4 ms (used as “noisy” image), (b)  and (c) Processed 4 ms data through TVN algorithm for three 
different regularization parameters. 

 

Noise level (%) PSNR (Noisy) (dB) PSNR (TVSB) (dB) PSNR (TVN) (dB) 
5 26.02 41.20 41.70  

10 20.00 36.10 37.50 

15 16.40 33.30 34.50 

TABLE 1: Peak signal-to-noise ratio (PSNR) for Shepp-Logan phantom with different levels of added 

Gaussian noise. 

 

Noise level (%) Computional time (TVSB) 
(s) 

Computational time (TVN) 
(s) 

5 10 5 

10 11 8 

15 14 10 

TABLE 2: Peak signal-to-noise ratio (PSNR) for Shepp-Logan phantom with different levels of added 

Gaussian noise. 

 

Parameter Noisy image 
(4 ms)  

TVSB  TVN  

PSNR(dB) 15.6 17.9 18.7 

Computation time 
(s) 

- 11.1 7 

TABLE 3: Peak signal-to-noise ratios (PSNRs) and computational time for CATPHAN. 
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Parameter Noisy 
image 
(4 ms) 

TVSB TVN 

noisyCNR

CNRmax  

noisyCNR

CNRmax

[ Ref. 45 ] 

noisyCNR

CNRmax

[Ref. 14 ] 
CNR(ROI-
1) 

1.57 3.80 3.87 2.46 3.4 2.8 

CNR(ROI-
2) 

0.36 1.68 1.74 4.8 4.47 2.47 

TABLE 4: Contrast-to-noise ratios (CNRs) for CATPHAN. 

 

Parameter Noisy image 
(4 ms)  

TVSB  TVN  

PSNR(dB) 25.5 28.2 28.9 

Computation time 
(s) 

- 14.1 9 

TABLE 5: Peak signal-to-noise ratios (PSNRs) and computational time for head-and-neck patient data. 

 

Noise level (%) TVSB TVN 
5 λ=0.08, γ=1 τ=0.98 

10 λ=0.10, γ=1 τ=0.98 

15 λ=0.14, γ=1 τ=0.98 

TABLE 6: Parameters of TVSB and TVN for Shepp-Logan phantom. 

 

Imaging Data TVSB TVN 
CATPHAN λ=20, γ=1 τ=180 

Head-and-Neck λ=10, γ=1 τ=105 

TABLE 7: Parameters for CATPHAN and Head-and-Neck data. 


