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Abstract 

 
Methodologies have been developed to allow parallel programming in a higher 
level. These include the Chemical Reaction Models, Linda, and Unity. We 
present the Chemical Reaction Models and its implementation in IBM Tuple 
Space. Sample programs have been developed to demonstrate this 
methodology. 
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1. Higher-Level Parallel Computing - Implicit Parallelism 
Higher level parallel programming models express parallelism in an implicit way. Instead of 
imposing programmers to create multiple tasks that can run concurrently and handle their 
communications and synchronizations explicitly, these models allow programs to be written 
without assumptions of artificial sequenciality. The programs are naturally parallel. Examples of 
such kind of models include the Chemical Reaction Models (CRMs) [1, 2], Linda [3], and Unity [4, 
5]. These models are created to address higher level programming issues such as formal 
program specification, program synthesis, program derivation and verification, and software 
architecture. Efficient implementation of these models has limited success and therefore 
obscures its direct applications in software design [6, 7]. Despite this limitation, efforts have been 
made in both academic and industrial settings to avail these models in real-world programming. 
For example, Unity has been used in industrial software design and found successful; execution 
efficiency of Linda has been affirmed by experiments and it is implemented by IBM Tuple Space. 
Recent discussions of these models in multi-agent system design have also been found in 
literature [8]. In the following discussion, we focus on the Chemical Reaction Models and its 
applications. 
 
The Chemical Reaction Models describe computation as “chemical reactions”. Data (the 
“solution”) are represented as a multiset. A set of “reaction” rules is given to combine elements in 
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the multiset and produce new elements. Reactions take place until the solution becomes inert, 
namely there are no more elements can be combined. The results of computation are 
represented as the inert multiset. Gamma is a kernel language in which programs are described 
in terms of multiset transformations. In Gamma programming paradigm, programmers can 
concentrate on the logic of problem solving based on an abstract machine and are free from 
considering any particular execution environment. It has seeded follow-up elaborations, such as 
Chemical Abstract Machine (Cham) [9], higher-order Gamma [10, 11], and Structured Gamma 
[12]. While the original Gamma language is a first-order language, higher order extensions have 
been proposed to enhance the expressiveness of the language. These include higher-order 
Gamma, hmm-calculus, and others. The recent formalisms, γ-Calculi, of Gamma languages 
combine reaction rules and the multisets of data and treat reactions as first-class citizens [13-15]. 
Among γ-Calculi, γ0-Calculus is a minimal basis for the chemical paradigm; γc-Calculus extends 
γ0-Calculus by adding a condition term into γ-abstractions; and γn-Calculus extends γ0-Calculus 
by allowing abstractions to atomically capture multiple elements. Finally, γcn-Calculus combines 
both γc-Calculus and γn-Calculus. For notational simplicity, we use γ-Calculus to mean γcn-
Calculus from this point on. 
 
The purpose of the presented study is to investigate a method for implementing γ-Calculus using 
IBM Tuple Space. TSpace supports network computation in client/server style. The target of this 
effort is to enable higher order programming in a parallel computing platform, such as computer 
clusters, and allow for refinement of the executable programs using transformation techniques. 
 
The paper will be organized as follows. In Section 2, we give a brief introduction to γ-Calculus. In 
Section 3, we discuss the method for implementing γ-Calculus in IBM Tuple space. Program 
examples are presented in Section 4. We conclude in Section 5. 
 

2. γ-Calculus 
The basic term of a Gamma program is molecules (or γ-expressions), which can be simple data 
or programs (γ-abstractions). The execution of the Gamma program can be seen as the evolution 
of a solution of molecules, which react until the solution becomes inert. Molecules are recursively 
defined as constants, γ-abstractions, multisets or solution of molecules. The following is their 
syntax: 
 
M ::=  0 | 1 | … | ‘a’ | ‘b’ | … ; constants 
      | γP[C].M   ; γ-abstraction 
      | M1, M2   ; multiset 
      | <M>   ; solution 
 
The multiset constructor “,” is associative and commutative (AC rule). Solutions encapsulate 
molecules. Molecules can move within solutions but not across solutions. γ-abstractions are 
elements of multisets, just like other elements. They can be applied to other elements of the 
same solution if a match to pattern P is found and condition C evaluates to true and therefore 
facilitate the chemical reaction. The pattern has the following syntax: 
 
 P ::= x | P, P | <P> 
 
where x is a variable. In addition, we allow for the use of tuples (written x1:… : xn) and names of 
types. For example, γ-abstraction  
 
 γ(x: Int, y: Int)[x ≥ y].x 
 
can be interpreted as: replace x, y by x if x ≥ y, which is equivalent to finding the maximum of 
two integers. 
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The semantics of γ-Calculus is defined as the following: 
 
(γp[c].m1), m2 =  фm1 if match(p/ m2) = ф and фc ; γ-conversion 
m1, m2  =  m2, m1    ; commutativity 
m1, (m2, m3) =  (m1, m2), m3    ; associativity 
E1 = E2  => E[E1] = E[E2]    ; chemical law 
 
The γ-conversion describes the reaction mechanism. When the pattern p matches m2, a 
substitution ф is yielded. If the condition фc holds, the reactive molecules γp[c].m1 and m2 are 
consumed and a new molecule фm1 is produced. match(p/m) returns the substitution 
corresponding to the unification of variables if the matching succeeds, otherwise it returns fail.  
 
Chemical law formalizes the locality of reactions. E[E1] denotes the molecule obtained by 
replacing holes in the context E[ ] (denoted by [ ]) by the molecule E1. A molecule is said to be 
inert if no reaction can be made within: 
 

Inert(m) �  
(m ≡ m’[(γp[c].m1), m2] => match(p/m2) = fail) 

 
A solution is inert if all molecules within are inert and normal forms of chemical reactions are inert 
γ-expression. Elements inside a solution can be matched only if the solution is inert. Therefore, a 
pattern cannot match an active solution. This ensures that solutions cannot be decomposed 
before they reach their normal form and therefore permits the sequentialization of reactions. The 
following inference rule governs the evolution of γ-expressions: 
 

 '
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This high level language can be implemented in Java using IBM's TSpaces server and Java 
package.  The method is detailed in the following section. 
 

3. IBM Tuple Space 
IBM Tuple Space was originally invented as an implementation of Linda computational model. 
While version 3.0 is only available after obtaining a site license, version 2.12 is freely available. 
Installing TSpaces is as easy as unpackaging the TSpaces package on the networked file system 
(NFS), adding it's directory to the users classpath, and starting the server in a GNU Screen 
session. 
 
3.1 Data Structures and Methods  
A TSpaces program uses more of a client/server model, with each node only communicating with 
a 'host' or any machine with a known name, which on a cluster would usually be the head node. 
And although TSpaces is flexible enough to assign global names and ranks to each node, micro-
managing the communications, this would defeat the purpose of having the abstraction layer 
TSpaces offers you. Data in a TSpaces program is shared through Tuples, a tuple is a data 
structure that wraps all other data structures in a tuplespace, this can include data primitives, as 
well as standard java classes and user defined classes. Every tuple is in a TuplesSpace, and 
every TupleSpace has a host (actually a fully qualified host name). 
 
The TSpaces methods used to obtain tuples are: read(), waitToRead(), take(), waitToTake(). The 
read() and take() methods vary in that the read() method leaves the tuple returned to the program 
in the tuplespace, and the take() method removes it from the tuplespace. The waitTo versions 
wait until a tuple appears in a tuplespace, and then takes it; these are good for synchronization, 
and can be set to time out in order to prevent the program from hanging indefinitely. These 
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methods take Tuples as arguments, and return the first tuple from the tuplespace that matches 
either the data types you specified, or specific values. There is also the scan() method, which 
works like read() except it returns all values that match the tuple specified. There are other 
Tspace methods that allow you more control over your program; countN() returns all the matching 
tuples and delete() removes all matching tuples. There are many other advanced features that 
allow you to manipulate TSpaces with a great deal of precision. 
 
Another bonus of using a platform that runs on Java is being able to run these programs on any 
OS, and even inside a web browser using an applet. Such applets are ideal for being able to 
monitor or visualize a reaction that is running. 
 
3.2 Synchronization  
The most difficult task in writing a CRM/gamma program in Tspaces is synchronization. 
Synchronization is needed to determine when to terminate the program, or when the molecules 
stop reacting.  
 
One program acts as one molecule, and different programs can read from the same tuplespace, 
but in order to test that the reaction of a molecule is exhausted, a program must run through the 
entire data space. So, reactions that involve more then one molecule type should be run in a 
cycle, the first program reacting all of the molecules from the original tuplespace, and writing the 
resulting tuples, as well as all of the unused tuples to the next tuplespace. The next program acts 
on this tuplespace until it is stable with regard to the molecule it represents, leaving the tuples in a 
third tuplespace. This continues until all of the programs that represent molecules have had a 
chance to run, and then it starts over. Termination occurs when the programs cycle through all of 
the programs without any changes to the tuples. 
 
Molecules that reduce tuplespaces to a single solution are the simplest. They require only one 
tuplespace and no synchronization. The max number finder and the tuple adder are examples of 
this, they simply react until there is only one element left, then they are done. 
 
After some further thought (but not further programming) a relation of numbers of tuplespaces to 
input and output elements of the gamma function can be noticed. In order to use the style of 
synchronization used in the sorting program, a program with X input molecules and Y output 
molecules requires X tuplespaces for the input and Y tuplespaces for the output. In order to 
detect stability, it will have to empty the input tuples 1 time with no changes and empty the output 
tuplespace 1 time. 
 
The sorting program is an example of this; the method it uses involves alternating between 
comparing two tuples of the form (even index n, dataValue), (n +1, dataValue) and (odd index m, 
dataValue), (m+1, dataValue), and incrementing a counter tuple whenever a change occurs. This 
allows a comparison after the last tuples are removed from the tuplespace and into another 
tuplespace to determine if any changes have been made. If two consecutive changeless runs 
occur, then every data element is in order, and the program terminates. 
 
There is a complication with programs where number of inputs is not equal to the number of 
outputs. The indexing must be handles specially or removed entirely; with numbers removed, 
there will be n + 1 elements missing, and with numbers added, there will be elements that need to 
be added somewhere, these can usually be appended to the end? 
 
If there are more inputs then outputs, then the tuplespace will eventually be reduced to the 
number of outputs for the one molecule. These types of programs can use the termination style of 
the max element and tuple adder programs; simply running until there are Y elements left, and 
then stopping. The only synchronization required is when emptying a tuplespace(or set of 
tuplespaces), and to prevent deadlock when (number of elements) < (number of processors) * 
(number of inputs), but this can be handled by detecting null reads and random timeouts on the 
waitToRead() calls. 
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Although Tuple Space was initially implemented to support Linda computation model, its functions 
well suite in the operational semantics of the chemical reactions models. We propose 
implementing γ-Calculus on Tuple Space. In the following, we demonstrate a few sample 
programs in γ-Calculus and their Tuple Space implementation. 
 

4. Examples 
 
4.1 Max Number Finder 
Given a set of values of an ordered type M, this program returns the maximum number of the set. 
The following γ-abstraction compares two randomly selected values. If the first value is greater 
than or equal to the second, it removes the second value from the set: 
 
select = γ(a: M, b: M)[a ≥ b]. a: M, select 
 
No global control is imposed on the way multiset elements are selected to ignite the reaction. If 
select is placed in an initial set M0 of values, it will compare two values and erase the smaller at a 
time till the maximum is left. So the maximum number program can then be written as: 
 
Max M0 = <select, M0> 
 
If the multiset M0 is represented as a tuple space, this program can be converted into one that 
finds and displays the greatest tuple inside a tuple space. It works with each node taking two 
tuples from the tuple space, comparing them, and placing the greatest one back to the tuple 
space. This process repeats itself until the termination condition is met, that is, when there is only 
one tuple left in the tuple space. When a node picks tuples up, if both tuples happen to be the 
same size, it simply places one of them back in the tuplespace while discarding the other one. If a 
node happens to take only one tuple because another node already picked the last remaining 
ones in the tuple space, this puts it back and repeats the process. This ensures that by the next 
check, a node will be able to take two tuples and perform the remaining operations to find the 
greatest tuple. If a node sees no tuples in the tuple space, this displays a message and 
terminates. If a node sees only one tuple in the tuple space, it assumes the greatest tuple was 
already found, displays a message and terminates. 
 
Check appendix A for an example of the code implemented in TSpaces as well as its flowchart. 
 
4.2 Tuple Adder 
Given a set of values of numerical type M, we write a program to summarize all the values. The 
following γ-abstraction adds two randomly selected values and put the sum back into the multiset: 
 
add = γ(a: M, b: M)[true]. a+b: M, select 
 
The tuple adder program can then be written as: 
 
Sum M0 = <add, M0> 
 
If M0 is represented as a tuple space, the corresponding TSpace program will add all of the tuples 
in a tuple space and displays their total sum. It works with each node taking two random tuples 
from the tuple space, adding them up, and placing a new tuple with their total sum back in the 
tuplespace (the tuples themselves are discarded). This process repeats itself until there is only 
one tuple left in the tuplespace, which is the total sum. If there are no tuples in the tuplespace 
before execution, the nodes display a message and terminate. 
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Check appendix B for the flowchart of the code implemented in TSpaces. Code is omitted 
because of the page limit. 
 
4.3 Sorter 
If a list is represented by multiset M = {(a, i) | a is value and i an index and i’s are consecutive}, 
the following recursive γ-abstraction replaces any ill-ordered pairs by two other pairs: 
 
sigma = γ((a, i): M, (b, j): M)[ i < j  a > b]. (b, i): M, (a, j): M, sigma 

 
It specifies that any two selected pairs (a, i) and (b, j) that satisfy the condition, i < j � a > b are 
replaced by two other pairs (b, i) and (a, j), and a copy of itself. If sigma is placed in an initial set 
M0 of pairs, it will replace ill-ordered pairs until the entire list is sorted. So a sorting program can 
be defined as: 
 
Sort M0 = <sigma, M0> 
 
In a tuple space, a similar process will happen. The program will sort all of the tuples in a tuple 
space in ascending order. Each tuple has an index and a value in the following format: (index, 
value). When two tuples, (i, x) and (j, y) from said tuple space S are taken by a node, it first 
checks whether x > y & i < j. If this happens to be true, then the following swap is performed: (i, 
y), (j, x) they are put back in the tuple space, and the tuples are in order. This process repeats 
itself until no more swaps can be performed, that is, when all of the tuples in a tuple space are 
arranged in ascending order.  
 
As mentioned above, multiple tuplespaces are required to synchronize this 'single pool' 
abstraction, in this case four tuplespaces were used. There is a primary pool, where the data is 
initially stored and an alternate pool where the data is written as it is being processed. Each of 
these pools is broken in to an even and an odd pool 
 
Check appendix C for the flowchart of the code implemented in TSpaces, the primary feature of 
this programming model, is that it can utilize up to n/2 processing nodes, where n is the number 
of data items being sorted. 
 
We have tested the above TSpace programs on a PC cluster and observed the computation in 
multiple nodes, and how the increase of nodes divides the number of comparisons per node, and 
increases speed; all of this thanks to the abstractions and portability offered by TSpaces.  
 
We want to point out that when converting a γ-Calculus program into a TSpace program, details 
must be added to make a working program. However, through the above examples, we can see 
the conversion is straightforward in sense of the computation model. Therefore, it is technically 
feasible to design an automatic conversion system that can parse γ-Calculus and convert the 
program into a TSpace program and this is the next goal of our ongoing project. 
 

5. Conclusion 
The Chemical Reaction Models are higher level programming models that address parallelism 
implicitly and allows programmers to focus on the logic of problem solving instead of deal with 
operational details in parallel computing. IBM Tuple Space supports client/server computation 
based on Linda model that uses a similar concept for data structures. We discuss a method for 
implementing a higher order chemical reaction model, γ-Calculus, in IBM Tuple Space. We 
present the rules for converting γ-Calculus constructs into TSpace codes and discuss the critical 
techniques such as synchronizations. Our work shows that the conversion is practical. 
Experiments are also conducted on a computer cluster. 
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Appendix A – Maximum Number Finder 
 
Flowchart 
 

 
 
Code 
 
//Wilfredo Molina – July 10, 2009 
 
import com.ibm.tspaces.*; 
 
public class gammaMax3 
{ 
 public static void main(String[] args) 
 { 
  try 
  { 
   String host = "grid.uhd.edu"; 
   TupleSpace ts = new TupleSpace("gammaSort", host); 
   Tuple template = new Tuple(new Field(Integer.class), new Field(Double.class)); 
  
   Tuple t1; 
   Tuple t2; 
  
   if ((Integer)ts.countN(template) < 1) 
    System.out.println("TupleSpace Empty Here"); 
   else 
   { 
    while ((Integer)ts.countN(template) > 1) 
    { 
     t1 = (Tuple)ts.take(template); 
     t2 = (Tuple)ts.take(template); 
  
     if (t1 == null || t2 == null) 
     { 
      if (t1 != null) 
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       ts.write(t1); 
      if (t2 != null) 
       ts.write(t2); 
     } 
     else 
     { 
      if ((Double)t1.getField(1).getValue() > 
(Double)t2.getField(1).getValue()) 
       ts.write(t1); 
      else 
       ts.write(t2); 
     } 
    } 
  
    if ((Integer)ts.countN(template) == 1) 
    { 
     t1 = (Tuple)ts.read(template); 
     System.out.println("Max Found: " + 
(Double)t1.getField(1).getValue()); 
    } 
   } 
  } 
  catch (TupleSpaceException tse) 
  { 
   System.out.println("It's Broke, Wil."); 
  } 
 } 
} 
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Appendix B – Tuple Adder 
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Appendix C – Sorter 
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