
Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 149

Parallel Computing in Chemical Reaction Metaphor with Tuple
Space

Hong Lin linh@uhd.edu
Department of Computer and Mathematical Sciences
University of Houston-Downtown
1 Main Street, Houston, Texas 77002, USA

Jeremy Kemp
Department of Computer and Mathematical Sciences
University of Houston-Downtown
1 Main Street, Houston, Texas 77002, USA

Wilfredo Molina
Department of Computer and Mathematical Sciences
University of Houston-Downtown
1 Main Street, Houston, Texas 77002, USA

Abstract

Methodologies have been developed to allow parallel programming in a higher
level. These include the Chemical Reaction Models, Linda, and Unity. We
present the Chemical Reaction Models and its implementation in IBM Tuple
Space. Sample programs have been developed to demonstrate this
methodology.

Keywords: Parallel Programming, Very High Level Languages, the Chemical Reaction Model, IBM Tuple
Space.

1. Higher-Level Parallel Computing - Implicit Parallelism
Higher level parallel programming models express parallelism in an implicit way. Instead of
imposing programmers to create multiple tasks that can run concurrently and handle their
communications and synchronizations explicitly, these models allow programs to be written
without assumptions of artificial sequenciality. The programs are naturally parallel. Examples of
such kind of models include the Chemical Reaction Models (CRMs) [1, 2], Linda [3], and Unity [4,
5]. These models are created to address higher level programming issues such as formal
program specification, program synthesis, program derivation and verification, and software
architecture. Efficient implementation of these models has limited success and therefore
obscures its direct applications in software design [6, 7]. Despite this limitation, efforts have been
made in both academic and industrial settings to avail these models in real-world programming.
For example, Unity has been used in industrial software design and found successful; execution
efficiency of Linda has been affirmed by experiments and it is implemented by IBM Tuple Space.
Recent discussions of these models in multi-agent system design have also been found in
literature [8]. In the following discussion, we focus on the Chemical Reaction Models and its
applications.

The Chemical Reaction Models describe computation as “chemical reactions”. Data (the
“solution”) are represented as a multiset. A set of “reaction” rules is given to combine elements in

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 150

the multiset and produce new elements. Reactions take place until the solution becomes inert,
namely there are no more elements can be combined. The results of computation are
represented as the inert multiset. Gamma is a kernel language in which programs are described
in terms of multiset transformations. In Gamma programming paradigm, programmers can
concentrate on the logic of problem solving based on an abstract machine and are free from
considering any particular execution environment. It has seeded follow-up elaborations, such as
Chemical Abstract Machine (Cham) [9], higher-order Gamma [10, 11], and Structured Gamma
[12]. While the original Gamma language is a first-order language, higher order extensions have
been proposed to enhance the expressiveness of the language. These include higher-order
Gamma, hmm-calculus, and others. The recent formalisms, γ-Calculi, of Gamma languages
combine reaction rules and the multisets of data and treat reactions as first-class citizens [13-15].
Among γ-Calculi, γ0-Calculus is a minimal basis for the chemical paradigm; γc-Calculus extends
γ0-Calculus by adding a condition term into γ-abstractions; and γn-Calculus extends γ0-Calculus
by allowing abstractions to atomically capture multiple elements. Finally, γcn-Calculus combines
both γc-Calculus and γn-Calculus. For notational simplicity, we use γ-Calculus to mean γcn-
Calculus from this point on.

The purpose of the presented study is to investigate a method for implementing γ-Calculus using
IBM Tuple Space. TSpace supports network computation in client/server style. The target of this
effort is to enable higher order programming in a parallel computing platform, such as computer
clusters, and allow for refinement of the executable programs using transformation techniques.

The paper will be organized as follows. In Section 2, we give a brief introduction to γ-Calculus. In
Section 3, we discuss the method for implementing γ-Calculus in IBM Tuple space. Program
examples are presented in Section 4. We conclude in Section 5.

2. γ-Calculus
The basic term of a Gamma program is molecules (or γ-expressions), which can be simple data
or programs (γ-abstractions). The execution of the Gamma program can be seen as the evolution
of a solution of molecules, which react until the solution becomes inert. Molecules are recursively
defined as constants, γ-abstractions, multisets or solution of molecules. The following is their
syntax:

M ::= 0 | 1 | … | ‘a’ | ‘b’ | … ; constants
 | γP[C].M ; γ-abstraction
 | M1, M2 ; multiset
 | <M> ; solution

The multiset constructor “,” is associative and commutative (AC rule). Solutions encapsulate
molecules. Molecules can move within solutions but not across solutions. γ-abstractions are
elements of multisets, just like other elements. They can be applied to other elements of the
same solution if a match to pattern P is found and condition C evaluates to true and therefore
facilitate the chemical reaction. The pattern has the following syntax:

 P ::= x | P, P | <P>

where x is a variable. In addition, we allow for the use of tuples (written x1:… : xn) and names of
types. For example, γ-abstraction

 γ(x: Int, y: Int)[x ≥ y].x

can be interpreted as: replace x, y by x if x ≥ y, which is equivalent to finding the maximum of
two integers.

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 151

The semantics of γ-Calculus is defined as the following:

(γp[c].m1), m2 = фm1 if match(p/ m2) = ф and фc ; γ-conversion
m1, m2 = m2, m1 ; commutativity
m1, (m2, m3) = (m1, m2), m3 ; associativity
E1 = E2 => E[E1] = E[E2] ; chemical law

The γ-conversion describes the reaction mechanism. When the pattern p matches m2, a
substitution ф is yielded. If the condition фc holds, the reactive molecules γp[c].m1 and m2 are
consumed and a new molecule фm1 is produced. match(p/m) returns the substitution
corresponding to the unification of variables if the matching succeeds, otherwise it returns fail.

Chemical law formalizes the locality of reactions. E[E1] denotes the molecule obtained by
replacing holes in the context E[] (denoted by []) by the molecule E1. A molecule is said to be
inert if no reaction can be made within:

Inert(m) �
(m ≡ m’[(γp[c].m1), m2] => match(p/m2) = fail)

A solution is inert if all molecules within are inert and normal forms of chemical reactions are inert
γ-expression. Elements inside a solution can be matched only if the solution is inert. Therefore, a
pattern cannot match an active solution. This ensures that solutions cannot be decomposed
before they reach their normal form and therefore permits the sequentialization of reactions. The
following inference rule governs the evolution of γ-expressions:

 '
]['][2121

EE
ECEECEEE




This high level language can be implemented in Java using IBM's TSpaces server and Java
package. The method is detailed in the following section.

3. IBM Tuple Space
IBM Tuple Space was originally invented as an implementation of Linda computational model.
While version 3.0 is only available after obtaining a site license, version 2.12 is freely available.
Installing TSpaces is as easy as unpackaging the TSpaces package on the networked file system
(NFS), adding it's directory to the users classpath, and starting the server in a GNU Screen
session.

3.1 Data Structures and Methods
A TSpaces program uses more of a client/server model, with each node only communicating with
a 'host' or any machine with a known name, which on a cluster would usually be the head node.
And although TSpaces is flexible enough to assign global names and ranks to each node, micro-
managing the communications, this would defeat the purpose of having the abstraction layer
TSpaces offers you. Data in a TSpaces program is shared through Tuples, a tuple is a data
structure that wraps all other data structures in a tuplespace, this can include data primitives, as
well as standard java classes and user defined classes. Every tuple is in a TuplesSpace, and
every TupleSpace has a host (actually a fully qualified host name).

The TSpaces methods used to obtain tuples are: read(), waitToRead(), take(), waitToTake(). The
read() and take() methods vary in that the read() method leaves the tuple returned to the program
in the tuplespace, and the take() method removes it from the tuplespace. The waitTo versions
wait until a tuple appears in a tuplespace, and then takes it; these are good for synchronization,
and can be set to time out in order to prevent the program from hanging indefinitely. These

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 152

methods take Tuples as arguments, and return the first tuple from the tuplespace that matches
either the data types you specified, or specific values. There is also the scan() method, which
works like read() except it returns all values that match the tuple specified. There are other
Tspace methods that allow you more control over your program; countN() returns all the matching
tuples and delete() removes all matching tuples. There are many other advanced features that
allow you to manipulate TSpaces with a great deal of precision.

Another bonus of using a platform that runs on Java is being able to run these programs on any
OS, and even inside a web browser using an applet. Such applets are ideal for being able to
monitor or visualize a reaction that is running.

3.2 Synchronization
The most difficult task in writing a CRM/gamma program in Tspaces is synchronization.
Synchronization is needed to determine when to terminate the program, or when the molecules
stop reacting.

One program acts as one molecule, and different programs can read from the same tuplespace,
but in order to test that the reaction of a molecule is exhausted, a program must run through the
entire data space. So, reactions that involve more then one molecule type should be run in a
cycle, the first program reacting all of the molecules from the original tuplespace, and writing the
resulting tuples, as well as all of the unused tuples to the next tuplespace. The next program acts
on this tuplespace until it is stable with regard to the molecule it represents, leaving the tuples in a
third tuplespace. This continues until all of the programs that represent molecules have had a
chance to run, and then it starts over. Termination occurs when the programs cycle through all of
the programs without any changes to the tuples.

Molecules that reduce tuplespaces to a single solution are the simplest. They require only one
tuplespace and no synchronization. The max number finder and the tuple adder are examples of
this, they simply react until there is only one element left, then they are done.

After some further thought (but not further programming) a relation of numbers of tuplespaces to
input and output elements of the gamma function can be noticed. In order to use the style of
synchronization used in the sorting program, a program with X input molecules and Y output
molecules requires X tuplespaces for the input and Y tuplespaces for the output. In order to
detect stability, it will have to empty the input tuples 1 time with no changes and empty the output
tuplespace 1 time.

The sorting program is an example of this; the method it uses involves alternating between
comparing two tuples of the form (even index n, dataValue), (n +1, dataValue) and (odd index m,
dataValue), (m+1, dataValue), and incrementing a counter tuple whenever a change occurs. This
allows a comparison after the last tuples are removed from the tuplespace and into another
tuplespace to determine if any changes have been made. If two consecutive changeless runs
occur, then every data element is in order, and the program terminates.

There is a complication with programs where number of inputs is not equal to the number of
outputs. The indexing must be handles specially or removed entirely; with numbers removed,
there will be n + 1 elements missing, and with numbers added, there will be elements that need to
be added somewhere, these can usually be appended to the end?

If there are more inputs then outputs, then the tuplespace will eventually be reduced to the
number of outputs for the one molecule. These types of programs can use the termination style of
the max element and tuple adder programs; simply running until there are Y elements left, and
then stopping. The only synchronization required is when emptying a tuplespace(or set of
tuplespaces), and to prevent deadlock when (number of elements) < (number of processors) *
(number of inputs), but this can be handled by detecting null reads and random timeouts on the
waitToRead() calls.

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 153

Although Tuple Space was initially implemented to support Linda computation model, its functions
well suite in the operational semantics of the chemical reactions models. We propose
implementing γ-Calculus on Tuple Space. In the following, we demonstrate a few sample
programs in γ-Calculus and their Tuple Space implementation.

4. Examples

4.1 Max Number Finder
Given a set of values of an ordered type M, this program returns the maximum number of the set.
The following γ-abstraction compares two randomly selected values. If the first value is greater
than or equal to the second, it removes the second value from the set:

select = γ(a: M, b: M)[a ≥ b]. a: M, select

No global control is imposed on the way multiset elements are selected to ignite the reaction. If
select is placed in an initial set M0 of values, it will compare two values and erase the smaller at a
time till the maximum is left. So the maximum number program can then be written as:

Max M0 = <select, M0>

If the multiset M0 is represented as a tuple space, this program can be converted into one that
finds and displays the greatest tuple inside a tuple space. It works with each node taking two
tuples from the tuple space, comparing them, and placing the greatest one back to the tuple
space. This process repeats itself until the termination condition is met, that is, when there is only
one tuple left in the tuple space. When a node picks tuples up, if both tuples happen to be the
same size, it simply places one of them back in the tuplespace while discarding the other one. If a
node happens to take only one tuple because another node already picked the last remaining
ones in the tuple space, this puts it back and repeats the process. This ensures that by the next
check, a node will be able to take two tuples and perform the remaining operations to find the
greatest tuple. If a node sees no tuples in the tuple space, this displays a message and
terminates. If a node sees only one tuple in the tuple space, it assumes the greatest tuple was
already found, displays a message and terminates.

Check appendix A for an example of the code implemented in TSpaces as well as its flowchart.

4.2 Tuple Adder
Given a set of values of numerical type M, we write a program to summarize all the values. The
following γ-abstraction adds two randomly selected values and put the sum back into the multiset:

add = γ(a: M, b: M)[true]. a+b: M, select

The tuple adder program can then be written as:

Sum M0 = <add, M0>

If M0 is represented as a tuple space, the corresponding TSpace program will add all of the tuples
in a tuple space and displays their total sum. It works with each node taking two random tuples
from the tuple space, adding them up, and placing a new tuple with their total sum back in the
tuplespace (the tuples themselves are discarded). This process repeats itself until there is only
one tuple left in the tuplespace, which is the total sum. If there are no tuples in the tuplespace
before execution, the nodes display a message and terminate.

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 154

Check appendix B for the flowchart of the code implemented in TSpaces. Code is omitted
because of the page limit.

4.3 Sorter
If a list is represented by multiset M = {(a, i) | a is value and i an index and i’s are consecutive},
the following recursive γ-abstraction replaces any ill-ordered pairs by two other pairs:

sigma = γ((a, i): M, (b, j): M)[i < j  a > b]. (b, i): M, (a, j): M, sigma

It specifies that any two selected pairs (a, i) and (b, j) that satisfy the condition, i < j � a > b are
replaced by two other pairs (b, i) and (a, j), and a copy of itself. If sigma is placed in an initial set
M0 of pairs, it will replace ill-ordered pairs until the entire list is sorted. So a sorting program can
be defined as:

Sort M0 = <sigma, M0>

In a tuple space, a similar process will happen. The program will sort all of the tuples in a tuple
space in ascending order. Each tuple has an index and a value in the following format: (index,
value). When two tuples, (i, x) and (j, y) from said tuple space S are taken by a node, it first
checks whether x > y & i < j. If this happens to be true, then the following swap is performed: (i,
y), (j, x) they are put back in the tuple space, and the tuples are in order. This process repeats
itself until no more swaps can be performed, that is, when all of the tuples in a tuple space are
arranged in ascending order.

As mentioned above, multiple tuplespaces are required to synchronize this 'single pool'
abstraction, in this case four tuplespaces were used. There is a primary pool, where the data is
initially stored and an alternate pool where the data is written as it is being processed. Each of
these pools is broken in to an even and an odd pool

Check appendix C for the flowchart of the code implemented in TSpaces, the primary feature of
this programming model, is that it can utilize up to n/2 processing nodes, where n is the number
of data items being sorted.

We have tested the above TSpace programs on a PC cluster and observed the computation in
multiple nodes, and how the increase of nodes divides the number of comparisons per node, and
increases speed; all of this thanks to the abstractions and portability offered by TSpaces.

We want to point out that when converting a γ-Calculus program into a TSpace program, details
must be added to make a working program. However, through the above examples, we can see
the conversion is straightforward in sense of the computation model. Therefore, it is technically
feasible to design an automatic conversion system that can parse γ-Calculus and convert the
program into a TSpace program and this is the next goal of our ongoing project.

5. Conclusion
The Chemical Reaction Models are higher level programming models that address parallelism
implicitly and allows programmers to focus on the logic of problem solving instead of deal with
operational details in parallel computing. IBM Tuple Space supports client/server computation
based on Linda model that uses a similar concept for data structures. We discuss a method for
implementing a higher order chemical reaction model, γ-Calculus, in IBM Tuple Space. We
present the rules for converting γ-Calculus constructs into TSpace codes and discuss the critical
techniques such as synchronizations. Our work shows that the conversion is practical.
Experiments are also conducted on a computer cluster.

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 155

6. Acknowledgements
This research is partially supported by NSF grant “Acquisition of a Computational Cluster Grid for
Research and Education in Science and Mathematics” (#0619312).

7. References
1. Banatre, J.-P. and Le Metayer, D. “The Gamma model and its discipline of programming”.

Science of Computer Programming, 15, 55-77, 1990.
2. Banatre, J.-P. and Le Metayer, D. “Programming by multiset transformation”. CACM, 36(1),

98-111, 1993.
3. Carriero, N. and Gelernter, D. “Linda in context”. CACM, 32(4), 444-458, 1989.
4. K.M. Chandy and J. Misra. “Parallel Program Design: A Foundation”, Addison-Wesley (1988)
5. Misra, J. “A foundation of parallel programming”. In M. Broy (ed.), Constructive Methods in

Computing Science. NATO ASI Series, Vol. F55, 397-443, 1989.
6. C. Creveuil. “Implementation of Gamma on the Connection Machine”. In Proc. Workshop on

Research Directions in High-Level Parallel Programming Languages, Mont-Saint Michel,
1991, Springer-Verlag, LNCS 574, 219-230, 1991.

7. Gladitz, K. and Kuchen, H. “Shared memory implementation of the Gamma-operation”.
Journal of Symbolic Computation 21, 577-591, 1996.

8. Cabri, et al. “Mobile-Agent Coordination Models for Internet Applications”. Computer, 2000
February, http://dlib.computer.org/co/books/co2000/pdf/r2082.pdf. 2000.

9. Berry, G. and Boudol, G. “The Chemical Abstract Machine”. Theoretical Computer Science,
96, 217-248, 1992.

10. Le Metayer, D. “Higher-order multiset processing”. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 18, 179-200, 1994.

11. Cohen, D. and Muylaert-Filho, J. “Introducing a calculus for higher-order multiset
programming”. In Coordination Languages and Models, LNCS, 1061, 124-141, 1996.

12. Fradet, P. and Le Metayer, D. “Structured Gamma”. Science of Computer Programming,
31(2-3), 263-289, 1998.

13. J.-P. Banâtre, P. Fradet and Y. Radenac. “Chemical specification of autonomic systems”. In
Proc. of the 13th International Conference on Intelligent and Adaptive Systems and Software
Engineering (IASSE'04), July 2004.

14. J.-P. Banâtre, P. Fradet and Y. Radenac. “Principles of chemical programming”. In S.
Abdennadher and C. Ringeissen (eds.): Proc. of the 5th International Workshop on Rule-
Based Programming (RULE'04), 124, ENTCS, 133-147, 2005.

15. J.-P. Banâtre, P. Fradet and Y. Radenac. “Higher-order Chemical Programming Style”. In
Proceedings of Unconventional Programming Paradigms, Springer-Verlag, LNCS, 3566, 84-
98, 2005.

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 156

Appendix A – Maximum Number Finder

Flowchart

Code

//Wilfredo Molina – July 10, 2009

import com.ibm.tspaces.*;

public class gammaMax3
{
 public static void main(String[] args)
 {
 try
 {
 String host = "grid.uhd.edu";
 TupleSpace ts = new TupleSpace("gammaSort", host);
 Tuple template = new Tuple(new Field(Integer.class), new Field(Double.class));

 Tuple t1;
 Tuple t2;

 if ((Integer)ts.countN(template) < 1)
 System.out.println("TupleSpace Empty Here");
 else
 {
 while ((Integer)ts.countN(template) > 1)
 {
 t1 = (Tuple)ts.take(template);
 t2 = (Tuple)ts.take(template);

 if (t1 == null || t2 == null)
 {
 if (t1 != null)

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 157

 ts.write(t1);
 if (t2 != null)
 ts.write(t2);
 }
 else
 {
 if ((Double)t1.getField(1).getValue() >
(Double)t2.getField(1).getValue())
 ts.write(t1);
 else
 ts.write(t2);
 }
 }

 if ((Integer)ts.countN(template) == 1)
 {
 t1 = (Tuple)ts.read(template);
 System.out.println("Max Found: " +
(Double)t1.getField(1).getValue());
 }
 }
 }
 catch (TupleSpaceException tse)
 {
 System.out.println("It's Broke, Wil.");
 }
 }
}

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 158

Appendix B – Tuple Adder

Hong Lin, Jeremy Kemp & Wilfredo Molina

International Journal of Computer Science and Security (IJCSS), Volume (4): Issue (2) 159

Appendix C – Sorter

Do counters
exist in eTS?

Start

Make counter in TSDo counters
exist in OTS?

Wait to read counter
in TS

End Term flag?

Is Tuple [i] >
Tuple [i+1]

Write checkout

Increment checkout

Remove checkout

Get Tuple [i+1]
from oTS

Get Tuple [i] from
eTS

Data in OTS?

Data in eTS?
Wait for counter to

be written
Switch Tuplespaces

Does counter
exist?

Data in OTS

Move to oOTS

Move eTS to eOTS

Increment NCCR

Does change
counter = 0 ?

Wait for all elements
to be checked in

Set NCCR to 0

Set term flagDoes NCCR =
2 ?

Write counter

Switch Tuplespaces

Wait to remove
counter

Switch Tuple [i+1]
and Tuple [i]

Write counter

Increment

Remove checkout

Write checkout

Decrement checkout

Buy SmartDraw!- purchased copies print this
document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

