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Abstract 

 
The potential of near infrared reflectance spectroscopy (NIRS) for rapidly and accurately determining the 
extractives and polyphenol contents in Pinus caribaea bark extracts was assessed. Pinus caribaea bark 
samples were obtained from 110 trees in plantation stands at different locations of Ghana and were then 
scanned by NIRS. Their extractives and polyphenol contents reference values were obtained by TAPPI 
T204 om-88 and Folin-Ciocalteu methods respectively. These reference values were regressed against 
different spectral transformations using partial least square (PLS) regression. First derivative 
transformation equation of the raw spectral data, resulted in a coefficient of determination r2 in the 
external validation of 0.91 and 0.97 respectively for extractives content and polyphenol content. The 
calibration samples covered a wide range of extractives content from 34 – 45% and polyphenolic content 
from 16 – 23.5%. The standard deviation to root mean square error of cross validation ratio 
(SD/RMSECV), root mean square error of calibration to standard deviation ratio (RMSEC/SD), 
RMSECV/RMSEC and r2 for both extractives and polyphenol models were indicative of good prediction 
equations. The predicted values were thus highly correlated with time-consuming wet chemical measured 
values of extractives content and polyphenol content. The use of NIRS for the determination of the 
extractives and polyphenol contents in Pinus caribaea bark thus provides an advantage of time saving 
and cost of analysis.   
 
Keywords: Folin-Ciocalteu Assay, Chemometric Modeling, Soxhlet Extraction, First Derivative, 
Spectroscopy 

 
 

1.  INTRODUCTION 
Polyphenolic and extractives contents are very important for most wood utilization. In the adhesive 
industry, the polyphenolic and extractives contents affect product quality, process and production costs. 
Nevertheless, there is no established on-line method suitable for the determination of polyphenolic and 
extractives contents in the raw material, wood bark. Near infrared spectroscopy (NIRS) combined with 
chemometrics might offer such applications.  
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Pinus caribaea is a plantation softwood species for wood production in Ghana. Extractives from P. 
caribaea bark have been studied in relation to wood adhesives production. These studies have revealed 
that P. caribaea bark contains significant amounts of polyphenols which can be useful as a basis for 
waterproof and durable wood adhesives when reacted with formaldehyde [1,2,3,4,5,6,7,8]. 
An alternative to wet chemical analysis of wood bark is NIRS. Absorption bands relating to many 
chemical bonds, such as: C–H, N–H, O–H, S–H, C=O and C=C, are found in the NIR region, from 780 to 
2500 nm. The NIR spectrum shows overtone and combination bands of these groups. Unfortunately, the 
absorption bands in the NIR region are broad and overlap, which means that conventional univariate 
calibration techniques, using only one wavelength per component for evaluations, cannot be applied in 
cases of overlapping bands. The development of more sophisticated statistical tools, like the most widely 
used partial least square (PLS) regression multivariate method for analysis, gave the possibility for the 
broad application of NIR spectroscopy to many analytical laboratories. NIR spectroscopy offers a number 
of advantages for qualitative and quantitative analysis and process control applications, such as: no 
sample preparation, no waste, reduced costs, fast measurements and analysis, fiber optics for remote 
measurements, high analysis accuracy and ease of use. 
With the near-infrared reflectance technique, the sample to be analyzed is subjected to NIR radiation; the 
sample absorbs part of the energy, while the rest is dispersed in all directions. The dispersed light gives 
information about the composition of the test sample and the resulting spectrum is used in qualitative and 
quantitative analysis. The best frequency intervals are in the region of the spectrum in which the reflected 
light intensity best correlates with the concentrations of the analyzed chemical species.   
 
Mathematical modeling using data obtained from wet chemical methods and spectra information can be 
performed using classical least squares, multiple linear regression, principal component regression, and 
partial least squares. The latter has the versatility to predict more than one variable, because a non-
iterative PLS algorithm is used to calculate model parameters [9]. This advantage has made PLS used 
extensively for NIRS applications in wood samples [10,11,12]. 
 
There is a broad range of analytical applications of NIRS in the agricultural, food, petrochemical polymer 
and textile industries [13,14,15]. This technology is also being used to an increasing extent in the forest 
and wood sectors. For wood products, NIRS is mainly used for rapid prediction of pulp yield and pulping 
characteristics [11,16,17]. NIRS technology is now being developed and calibrated to replace classical 
wet chemical methods for wood applications.   
 
One of the main problems affecting the utilization of bark tannins in the manufacture of bio-adhesives is 
that the raw material (bark) each time has to be analysed for its chemical constituents in order to use it 
appropriately. However, the classical chemical methods of analysis are tedious, time-consuming and 
costly. The aim of this study therefore was to investigate whether NIRS could be used to rapidly and 
accurately predict polyphenolic content and extractives content of P. caribaea bark.    
 

2.  MATERIALS AND METHODS 
 
2.1    Materials 
Pinus caribaea bark, obtained from 110 trees in plantation stands at the moist and dry semi-deciduous 
forest zones of Ghana, were dried at 40°C for 48 h in a convection oven, ground in a Wiley mill to 100 - 
250 µm particle size, sealed in a plastic bag, and stored at room temperature until use. The samples were 
milled to effect solvent extractions. All chemicals used were of analytical grade, obtained from commercial 
suppliers.  
 
2.2    Chemical Analysis 
For each of the 110 trees, 20 g of the dried powdered bark sample was extracted using a soxhlet 
extractor. Extractions were carried out successively with 60% aqueous acetone and 70% aqueous 
ethanol for three hours each. Extractive contents were determined gravimetrically according to TAPPI 
T204 om-88 [18]. The total extractives content was calculated by summing the acetone extractives and 
ethanol extractives contents. All samples were analyzed in duplicate. 
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The phenolic content was determined in the acetone and the ethanol extracts by means of a modified 
Folin-Ciocalteu assay [19]. For each extract, 0.5ml was put in a test tube and 0.5 ml distilled water added. 
0.5ml of Folin-Ciocalteu reagent was added followed by 2.5 ml 20% Na2CO3 solution. The tube was 
vortexed and the absorbance at 765 nm taken after 60 min on a Beckman DU 650 UV-VIS 
spectrophotometer. The amount of total extractable phenolics as gallic acid equivalent was calculated 
from a calibration curve using standard gallic acid solution, and expressed on a dry matter basis. All 
samples were run in duplicate. 
 
2.3    Near Infrared Spectra Aquisition 
Each of the 110 powdered un-extracted bark samples was placed in a NIRSystem micro sample cup. 
Near-infrared (NIR) spectra were recorded on a Bruker FT-IR spectrometer to measure diffuse reflected 
light in the range 800 to 2,600 nm from the sample held in the spinning sample holder. Sixty four scans 
were accumulated for the sample with a spectral resolution of 8 cm

-1
 and the results averaged. After the 

spectrum had been obtained, the sample cup was emptied, repacked with the next sample and the 
spectrum obtained. The background was taken with a sintered gold reference standard.  
 
2.4    Calibration Modeling 
Chemometric modelling was performed with the OPUS software package (version 5.5). For pre-
processing, the algorithms of full multiplicative scatter correction, first derivative (smoothed and derived 
according to Savitzky and Golay [20]), straight line subtraction and standard normal variate among others 
were applied. Wavelength selection was done manually as well as automatically by means of the Martens 
Uncertainty test [21], to eliminate unimportant variables to simplify the models and make them more 
reliable.  
 
Calibrations were developed (based on NIR spectra and wet chemical analysis of polyphenol content and 
extractives content) using partial least squares (PLS) regression after principal component analysis (PCA) 
had been performed on the global samples spectra which was also done after checking on the normal 
distribution of the samples. Calibrations were tested by full cross-validation and predicted extractives 
content and polyphenol content were compared to measured ones. The root mean square error was 
calculated for the calibration samples and for the predicted samples.  
 

3.  RESULTS AND DISCUSSIONS 
A statistical summary of the polyphenolic content and extractives content of P. caribaea bark determined 
through wet chemical analysis is given in Table 1. A meaningful interpretation of calibration results 
depends to a large extent on the accuracy and precision of the wet chemical analysis of the samples. The 
extractives content of P. caribaea bark varied from 34% to 45%, with a mean and standard deviation of 
39.4% and 2.42% respectively. The measured extractives content (N=110) were fairly normally distributed 
around the mean. Similarly, the polyphenol content of P. caribaea bark varied from 16% to 23.5% with a 
mean and standard deviation of 19.69% and 1.18% respectively. The measured polyphenol content 
(N=110) were also fairly normally distributed around the mean. The values determined for both 
extractives content and polyphenol content of the samples covered a large enough range, which was 
helpful for developing good models.     
 

Parameter (%) N Range Mean Standard deviation 

 
Extractives content 

 
Polyphenol content 

 
110 

 
110 

 
34 – 45 

 
16 – 23.5 

 
39.4 

 
19.69 

 
2.42 

 
1.18 

 
TABLE 1: Descriptive statistics for extractives content and phenolic content of bark samples. 

                               N: total number of samples statistically analysed. 

 
 
The NIR diffuse reflectance spectra of P. caribaea bark samples (Fig. 1) demonstrated a high degree of 
variation, with wavelengths in the regions 7500 – 6200 cm

-1
 and 5500 – 4500 cm

-1
 showing the greatest 

variability. Bands in the region 6170 – 5800 cm
-1

 results from the first overtone of C – H stretch, while 
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bands in the region 4760 – 4350 cm
-1

 mainly results from C – H, N – H and O – H combination bands 
[13,22]. Some of the compounds that have been noted have been assigned to specific wood components 
that are also present in bark. The band at 4760 cm has been assigned to cellulose [23] and starch [22] 
and the bands at 6000 and 5930 cm

-1
 have been assigned to lignin [22,24]. Michell and Schimleck [25] in 

a study of Eucalyptus Globulus Labill. Woods, noted that the bands at 5995, 4800 and 4690 cm
-1

 were all 
very well correlated with extractives and lignin content.    
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FIGURE 1: Near infrared diffused reflectance spectra of P. caribaea bark. 

 

The optimal method of spectra processing (constant offset elimination, vector normalization, straight line 
subtraction, min-max normalization, multiplicative scatter correction, internal standard, first derivative and 
second derivative etc.) depends on the system studied. In this study, first derivative spectra processing 
with 15 point filter and second order polynomial at two frequency ranges (7500 – 6200 cm

-1
 and 5500 – 

4500 cm
-1

) with the best positive correlation between the changes in the spectra and measured 
extractives and polyphenol contents data were chosen by the PLS algorithm (Fig. 2) to give the best 
results for the PLS calibration model. The best positive correlation between the changes in the spectra 
and measured data are in the frequency ranges with maximal absorption and the largest value for the 
correlation coefficient r

2
.         
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FIGURE 2: First derivative spectra of P. caribaea bark in selected wavelength region. 

   
In an evaluation of the methods for measuring phenolics, Yu and Dahlgren [26] suggested that the Folin-
Ciocalteu method which takes into account all hydroxyl aromatic compounds [27] provides a good test for 
the characterization of extractable phenolics.  Total polyphenol analysis is achieved by direct spectral 
measurement at 280 nm or by Folin-Ciocaltreau colorimetry. Spectral analysis of phenolic compounds is 
effective, but because the absorbance maxima of all polyphenols is not 280 nm, results are more difficult 
to quantify. The Folin-Ciocalteu method is the reduction of metal oxides by polyphenols resulting in a blue 
solution that has absorption maxima at 765 nm. Since different types of polyphenols react similarly with 
the Folin-Ciocalteu reagent, it is more easily quantifiable. However, the procedure is complicated and 
time-consuming because some sample dilution and long incubation periods are required. The application 
of NIRS combined with multivariate calibration can address sample preparation and analyses reducing 
the time considerably.  
   
The quality of the chemometric model depends on the choice of the correct number of factors (rank) used 
for the model. Choosing too small a rank, results in underfitting so that not all features can be explained 
by the model. On the other hand, including too many factors (rank too high) leads to overfitting and only 
adds noise, and in fact degrades the model. As a consequence there is an optimum number of factors for 
every system, i.e. an optimum rank. A criteria for determining the optimum rank is to look at the root mean 
square error of cross validation resulting from an analysis of the cross validation. If the RMSECV is 
depicted against the rank used in each model, a minimum can be observed in this graph, indicating the 
optimum rank. In this study, the optimum rank for both models was 9 (Figure 3). The leave-one-out cross 
validation method was used to calculate the prediction residual error sum of squares (which calculates 
the lack of prediction accuracy) and to establish the number of PLS components for each model. A 
number of PLS components that yields the lowest prediction residual error sum of squares is usually 
chosen to establish a model [9]. In this study, a PLS component of 4 was found for each of the models 
(Table 2). A lower PLS component improves the statistics of a model.  
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a) 

 
 
 
 
b) 

 
 

FIGURE 3: RMSECV plotted against Rank for a) extractives content and b) polyphenol content. 
 

Other criteria generally used to assess the quality of a model include the root mean square error of 
calibration (RMSEC), root mean square error of cross validation (RMSECV) and the correlation coefficient 
(r

2
). A good model should have a low RMSEC, a low RMSECV and a high correlation coefficient (r

2
) 

between the predicted and measured values, but also a small difference between RMSEC and RMSECV. 
The correlation coefficient r

2
, the most commonly used, should be higher than 0.8 for quantitative 

predictions. For excellent models, the RMSEC-to-SD ratio should be ≤ 0.2, where SD is the standard 
deviation of the reference values. If 0.2 < RMSEC-to-SD ratio ≤ 0.5, quantitative predictions is possible 
[28]. The SD-to-RMSECV ratio should be ≥2 [29,30], RMSECV-to-RMSEC ≤ 1.2 and the SD-to-RMSECV 
ratio should be ≥ 2.5 [31]. The PLS regression calibrations developed for extractives content and 
polyphenol content in this study are given in Table 2.   
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Model N PLS 
Comp 

RMSEC RMSECV RMSEC/SD SD/RMSECV RMSECV/RMSEC R
2
 

 
EC (%) 

 
PC (%) 

 
110 

 
110 

 
04 
 

04 

 
0.65 

 
0.21 

 
0.72 

 
0.23 

 
0.26 

 
0.17 

 
3.36 

 
5.13 

 
1.10 

 
1.09 

 
0.91 

 
0.96 

 
TABLE 2.  PLS regression calibration developed for extractives content (EC) and polyphenol content (PC). 

 
Plots indicating the relationship between laboratory determined extractives and polyphenol contents and 
their NIR fitted values are shown in Figures 4 and 5 respectively. Both plots show that over the range of 
calibration sets the data were well fitted by the PLS regression. Gielinger et al. [32] have used NIR 
spectroscopy to estimate total soluble extractives and phenolic contents from Larch  heartwood, recording 
good calibration models. Donkin and Pearce [33] have also used NIR spectroscopy to estimate total 
soluble extractives from the bark of Acacia mearnsii reporting a correlation coefficient of 0.99. Their 
calibration was developed using 11 factors, which could be considered excessive. Schimleck and Yazaki 
[34] used NIR spectroscopy to estimate hot water extractives from the bark of P. radiata reporting a 
correlation coefficient of 0.88. In this study, the two calibrations between extractives content and 
polyphenol content and the spectral data were accurate with r

2
 = 0.91 and 0.96 and RMSECV = 0.72 and 

0.23 respectively. In general, both models showed good predictive ability as can be observed in Figures 6 
and 7 where true versus predicted data were plotted for models of extractives content and polyphenol 
content respectively. For each model, the slope of the calibration curve was close to 1.0 indicating a good 
calibration. However, the PLS model for polyphenol content showed a higher prediction performance than 
that for extractives content, according to RMSECV/RMSEC, RMSEC/SD, SD/RMSECV and r

2
 (Table 2). 

Values obtained for RMSEC and RMSECV were close for each model, indicating that the introduction of 
the given number of PLS components did not create an over-fitting effect and that the calibration model 
was valid.  
 

 
 

FIGURE 4: Correlation between true and NIRS fitted values for extractives content. 
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FIGURE 5: Correlation between true and NIRS fitted values for polyphenol content. 
 

 
 

FIGURE 6: True versus predicted values for model estimating extractives content. 
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FIGURE 7: True versus predicted values for model estimating polyphenol content. 

 

4.   CONCLUSSION 
As the use of natural adhesives becomes more common, the need has arisen for an analytical method 
capable of rapidly and noninvasively assessing phenolic content in wood biomass. This study has 
demonstrated the high reliability of NIRS in determining extractives and polyphenolic contents in P. 
caribaea bark.  These compounds have great significance in adhesives formulation, and the availability of 
NIRS to measure them may help adhesive technologist to develop improved adhesives through rapid, 
cost-effective and nondestructive NIRS analysis. By means of multivariate calibration techniques (PLS), 
relationships were established between reflectance spectra and extractives content and polyphenol 
content of Pinus caribaea bark. The first derivative spectra with PLS were found to provide the best 
predictions for the extractives and polyphenol contents of Pinus caribaea bark with a RMSECV of 0.72 
and 0.23 and coefficient of determination (r

2
) of 0.91 and 0.96 respectively. The non-destructive FT-NIR 

measurements thus provided good estimation of the extractives content and polyphenol content of Pinus 
caribaea bark and could therefore be of practical importance.  
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